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a b s t r a c t

A new approach for testing batch “similarity” through comparison of drug dissolution

profiles, based on principal component analysis with the establishment of a confidence

region (PCA-CR), is presented. The dissolution curves corresponding to three brands each

of Furosemide and Acetaminophen tablets, taken as model drugs, were prepared by disso-

lution measurements at multiple pre-specified time points. Reference and test data were

simultaneously subjected to PCA and pairwise comparisons between the dissolution charac-

teristics of lots of the same and different brands were carried out. The comparisons involved

plotting the weighed scores of the first two principal components of reference and test lots,

while decision about “similarity” was made by checking for inclusion of more than 80% of

the tablets of the test lot in the 95% confidence ellipse of the reference samples. Two pub-

lished datasets were also analyzed in the same fashion and all the results were compared

with information provided by the difference (f1) and similarity (f2) factor tests. Unlike the f2
Furosemide

Multivariate method

criterion, the proposed method reflects variability within the individual dissolution curves,

being also highly sensitive to profile (shape and size) variations. Comparison between the

area enclosed by the confidence ellipses of the weighed scores plot and the region obtained

from the bootstrap-calculated acceptable values of the corresponding f2 tests suggested that

PCA-CR represents, in general, a more discriminating standard.

studies, helping establish shelf life, and it has been recognized
1. Introduction

In vitro dissolution testing is an economic and useful quality
control tool to effectively assure acceptable product quality
during different stages of the development and production of
tablets, capsules and other solid dosage forms (Dressman and
Kramer, 2005). The test enables detection of the influence of
key manufacturing factors including excipients, binder and

mixing effects, as well as granulation procedure and coating
parameters, providing better control of the production process
and assuring consistent batch to batch quality of the product.

∗ Corresponding author.
∗∗ Corresponding author at: School of Biochemical and Pharmaceutical

Rosario, Argentina.
E-mail address: kaufman@iquios.gov.ar (T.S. Kaufman).

0928-0987/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejps.2008.02.009
© 2008 Elsevier B.V. All rights reserved.

The dissolution has also been employed in product develop-
ment and during dosage form optimization to assist in proper
formulation selection. In addition, it has served as a means
to compare different formulations (Naylor et al., 1993) and
determine final dissolution specifications for pharmaceutical
dosage forms (Elkoshi, 1999).

The dissolution test has also been used during stability
Sciences, National University of Rosario, Suipacha 531, S2002LRK

as an important in vitro parameter of tablets’ quality because of
its correlation with drug bioavailability (Williams et al., 1991;
Fassihi and Ritschel, 1993; Munday and Fassihi, 1995; Grundy
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dissolution test station configured as USP-apparatus II (pad-
e u r o p e a n j o u r n a l o f p h a r m a c e

t al., 1997). As a result, under certain strictly defined condi-
ions, the test can also be employed as a surrogate of in vivo
tudies for the assessment of product bioequivalence, helping
o reduce costs by circumventing the need to perform human
olunteer experiments (Leeson, 1995; Yu et al., 1996).

Because it is essential to investigate the drug release
haracteristics of pharmaceutical preparations, dissolution
as become highly significant and one of the primary phar-
acopoeial tests that is performed to ensure that tablets,

apsules and other drug products comply with pre-established
uality standards.

For a drug product, the curve of the mean dissolution rate
ver time is referred to as its dissolution profile. There are
everal circumstances under which comparison of the disso-
ution profiles of two solid oral dosage forms is important.
mong them, when an approved formulation is subjected to
post-approval change due to modifications of some criti-

al parameters, including manufacturing site, composition,
anufacturing process and batch size. In these cases, FDA

uidances for scale-up and post-approval changes for solid
ral dosage forms (FDA, 1995) require that the dissolution pro-
les of the pre-change and post-change products must be
similar”.

Another paradigmatic scenario is in the development of
eneric preparations. Here, a proprietary product, which has
een available in the market for some time and has a clinically
stablished efficacy, is selected as a reference against which
o compare the new formulation. Because of the “similarity”
equirement, the generic preparation should be formulated
ith its dissolution profile as closely similar as possible to that
f the proprietary product.

In response to the need of assessing “similarity”, numer-
us strategies have been proposed for comparing dissolution
rofiles. These, which are divided in ANOVA-based, model-
ependent and model-independent approaches, have been
xtensively reviewed (Polli et al., 1996, 1997; O’Hara et al.,
998; Costa and Sousa Lobo, 2001). The ANOVA-based methods
Mauger et al., 1986; Yuksel et al., 2000) assume the existence
f underlying models, but do not require fitting of a curve.
hey test statistical differences of the dissolution profiles in

erms of “shape” and “size” of the curves, providing proba-
ility values related more to statistical equivalence than to
harmaceutical similarity.

Model-dependent methods rely on curve-fitting proce-
ures, which facilitate data analysis and interpretation
ecause they describe the dissolution profiles as functions of
few model parameters that can be determined and statis-

ically compared. In general, however, these are rather rigid
epresentations, there is no universal model to fit all dissolu-
ion profiles and there are no established criteria to select the
roper mathematical model.

Model-independent methods do not require a precon-
eived or fitted model. The difference (f1) and similarity (f2)
actors introduced by Moore and Flanner (1996) as mathemat-
cal indices to compare dissolution profiles constitute the most

idely known examples of the model-independent approach.

his procedure, where the dissolution behaviour of a num-
er of samples (n) of reference (R) and test (T) products are
ompared at t time points (Eqs. (1) and (2)), is being recom-
ended by the FDA Guidance for Industry (FDA, 1995), and
a l s c i e n c e s 3 4 ( 2 0 0 8 ) 66–77 67

has been accepted by European agencies and other regulatory
bodies (Human Medicines Evaluation Unit, 1999). For testing
purposes, a discriminatory medium can be identified by vary-
ing stirring rate and parameters of the dissolution medium,
including pH, ionic strength, volume, etc.

f1 = 100

⎛
⎜⎜⎜⎜⎝

n∑
t=1

|Rt − Tt|

n∑
t=1

Rt

⎞
⎟⎟⎟⎟⎠ (1)

f2 = 50 log

⎧⎨
⎩
[(

1 +
(

1
n

) n∑
t=1

(Rt − Tt)
2

)]−0.5

× 100

⎫⎬
⎭ (2)

Since drug release depends on many variables, such as the
physicochemical properties of the drug, the excipients and
the structural properties of the tablet matrix, an understand-
ing of the complex causalities between different variables and
responses becomes difficult. Therefore, for decision taking, it
is useful to collapse this complex information into a minimum
identifiable number of parameters. As a variable simplification
approach, in many cases two batches are compared through
the determination of their percentage of dissolved active com-
ponent at a certain time point. However, this provides less
meaningful conclusions than the independent comparison of
specifications at each of multiple time points or the analysis
of the entire dissolution profile. For such problems, multivari-
ate data analysis is the tool of choice. Multivariate methods
such as principal component analysis (PCA) have been sug-
gested for the evaluation of dissolution profiles (Tsong et al.,
1997; Adams et al., 2001, 2002), while other approaches includ-
ing artificial neural networks with similarity factor (Peh et al.,
2000; Goh et al., 2002, 2003) and Gaussian mixture models (Lim
et al., 2005) as well as partial least squares (Korhonen et al.,
2005), have been proposed as multivariate strategies for the
prediction of dissolution profiles.

Here, we propose the application of PCA with confidence
regions (PCA-CR) as a new and alternative method to com-
pare solid dosage forms dissolution behaviour and decide
about their “similarity”. The usefulness of the suggested strat-
egy was demonstrated by comparing different brands and
lots of tablet preparations containing either Furosemide or
Acetaminophen, as models, and also two selected literature
datasets. For assessing the scope and limitations of the pro-
posed approach, the PCA-CR results were confronted in each
case with the conclusions provided by the corresponding f1

and f2 factors, taken as reference.

2. Materials and methods

2.1. Equipment, software and reagents

Dissolution tests were performed with a Hanson SR8-Plus
dle). The amounts of drug dissolved were determined in 1-cm
quartz cells, employing a Shimadzu UV-1601PC spectropho-
tometer interfaced to a computer running UV-Probe software
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v. 2.00. Determinations were carried out against a blank of
dissolution medium, on filtered samples suitably diluted with
dissolution medium, by comparison with standard solutions
containing known concentrations of the corresponding ana-
lytes. All the reagents employed were of analytical grade;
double distilled water was employed as solvent. All the com-
putations were performed in Matlab v. 5.3 (Natwick, MA); the
Matlab scripts are freely available from the authors.

2.2. Tablet preparations and dissolution conditions

All the brands and lots of Furosemide and Acetaminophen
drug products used met the pharmacopoeial specifications for
weight variation, content uniformity and assay.

2.2.1. Furosemide
Eight lots corresponding to three different brands of tablet
products (40 mg) were studied. Each product was randomly
labelled with a specific letter for identification, designating
with A1 the reference lot of the innovator product. The release
characteristics were determined at 37 ± 0.5 ◦C, using the pro-
cedure of the “Dissolution Test 1” of USP 30 (USP Convention,
2007). The medium was 900 ml of Phosphate buffer (0.05 M, pH
5.8) and the stirring rate was 50 rpm. One tablet was used in
each vessel, and each test comprised two runs of six tablets
yielding a total of 12 tablets per lot (FDA, 1995). During each
experiment, aliquots of 3 ml were removed at 2, 3, 4, 5, 6, 7,
8, 9, 10, 12, 14, 16, 18, 20, 22, 26 and 30 min, filtered and suit-
ably diluted with medium. The amount of drug dissolved was
determined from the absorbances of the samples at 274 nm.
Each dissolution curve contained a total of 17 time points.

2.2.2. Acetaminophen
Three different brands of tablet products (500 mg) were studied
and brand A was used as the reference product (innovator).
The other brands were each randomly designated with letters
B and C for identification. The dissolutions were determined at
37 ± 0.5 ◦C in 900 ml of Phosphate buffer (0.05 M, pH 5.8), using
a slight modification (stirring rate was 30 rpm) of the USP 30
procedure in order to increase selectivity. One tablet was used
in each vessel, and each test comprised two runs of six tablets
yielding a total of 12 tablets per lot (FDA, 1995). Aliquots of
3 ml were removed at 2, 6, 10, 14, 18, 22, 26, 30, 45 and 60 min,
filtered and suitably diluted with medium. The amount of drug
dissolved was determined at 243 nm. Each dissolution curve
contained 10 time points.

2.2.3. Literature data
Data taken from the following sources were employed: (a)
Tsong and Hammerstrom (1994): dissolution curves of three
approved batches and a new test batch (12 tablets each, deter-
mined at 7 time points). (b) Shah et al. (1998) and Ma et al.
(2000): data of a pre-change lot and five post-change lots (12
tablets each, determined at 4 time points).

2.2.4. Theoretical background of the f and f estimators
1 2

and the PCA algorithm
2.2.4.1. Factors f1 and f2 as estimators of difference and sim-
ilarity. Eqs. (1) and (2) correspond to the difference (f1) and
similarity (f2) factors, respectively (Moore and Flanner, 1996).
i c a l s c i e n c e s 3 4 ( 2 0 0 8 ) 66–77

The f1 index computes the absolute cumulative differences
between drug release in reference and test samples, relative
to the drug dissolved in the reference sample. Therefore, the
value of this parameter, which is proportional to the average
difference between both profiles, depends on which sample is
taken as reference. Acceptable values of f1 are 0 ≤ f1 ≤ 15.

On the other hand, f2 is a logarithmic function of the recip-
rocal of the mean square-root transform of the sum of squared
errors at all points, and is a measure of the degree of similar-
ity in the percent rate of drug release between two dissolution
profiles. The f2 values are independent from the sample taken
as reference, and they range between 0 and 100, with a higher
number indicating better similarity between profiles. Accept-
able values are 50 ≤ f2 ≤ 100, which is considered equivalent
to a difference in approximately 10% between the dissolution
profiles being compared (Shah et al., 1998).

2.2.4.2. Principal component analysis. The principles underly-
ing PCA have been extensively discussed elsewhere (Wold et
al., 1987); the following is a brief description of this multivari-
ate method.

Given matrix X(p×t), where each row contains t different
pieces of information gathered from p objects, the column
mean centred data matrix Xc can be obtained by subtract-
ing the row vector containing the mean values of its columns
(Xm), from each row of the original matrix (X).

In turn, Xc can be decomposed into the product of an
orthogonal matrix U, a diagonal matrix S and another orthog-
onal matrix V (Eq. (3)), where U S VT represents the singular
value decomposition (SVD) of Xc (Manly, 1986).

Xc(p×t) = U(p×t)S(t×t)V
T
(t×t)(p > t) (3)

The score matrix U(p×t) is the unweighed (normalized) score
matrix and represents the projections of the data on the PCs;
therefore, similar samples are represented by similar scores.
On the other side, the diagonal matrix S(t×t) contains the
singular values, which are the square roots of the eigenval-
ues associated to the corresponding PCs (eigenvectors). These
diagonal terms reflect the dynamics of the dissolution; there-
fore, the largest eigenvalues correspond to the dimensions
that explain larger amounts of variance of the dataset. Matrix
T(t×t) known as the weighed (unnormalized) score matrix, is
the product between U and S (T = U·S). Finally, the loadings
matrix V(t×t) contains in its columns the weights contributed
by the original variables (eigenvectors) to the PCs.

2.2.5. Detection of outliers
Outlier detection was performed by means of Hotelling’s test
(Jackson, 1991). For that purpose, the test was implemented
for each dataset, according to Eq. (4), where �x is the mean
of the data and S−1

XX is the inverse of the data covariance
matrix S (Eq. (5)). The required Mahalanobis distance was
XX

calculated according to Eq. (6), where q is the number of dis-
solution curves in the reference and test lots (Section 2.2.9),
and was compared with the corresponding Chi square value
at a 99% confidence level and t (number of data points per
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urve) degrees of freedom.

[y = (x − �x)TS−1
XX(x − �x) < yp] = 1 − ˛ (4)

XX = (t − 1)−1 · XcXcT (5)

(x − �x)TS−1
XX(x − �x) < �2

0.99,t (6)

.2.6. Selection of the optimum number of principal
omponents
s the principal components (PCs) are weighed in decreas-

ng order of variance coverage, the variation of the dataset
an be conveniently expressed in terms of a small number of
ignificant variables, while the remaining variables (residual),
ontain mostly noise. Thus, the reconstructed data matrix X*c
an be obtained (Eq. (7)) by employing a reduced number (r < t)
f PCs.

X∗c(p×t) = U∗
(p×r)S

∗
(r×r)V

∗T
(r×t) = T∗

(p×r)V
∗T
(r×t),

[r ≤ p − 1(p ≤ t) and r ≤ t(p > t)] (7)

The number of significant PCs to be retained (r) can be
btained by different means, including cross-validation, set-
ing a threshold to the minimum variance explained, or
valuating the residuals between Xc and X*c. Observation of
he shape of the PCs also constitutes a useful hint. In this
ork, X*c was reconstructed from matrices U*, S* and V*

ith an increasing number of PCs, until the optimum num-
er of factors, yielding the error matrix E (Eq. (8)) similar to

nstrumental error, was obtained. Two PCs were found to sat-
sfactorily reconstruct the original dataset in the four studied
ases.

(p×t) = Xc(p×t) − X∗c(p×t) (8)

.2.7. Confidence regions
n order to test the hypothesis of similarity, the 95% a confi-
ence region (˛ = 0.05) was drawn for each pair of lots being
ompared, taking into account the variability of the weighed
cores data of the reference lot. This confidence ellipse was
btained from Hotelling’s test (Eq. (6)) and plotted according
o Eq. (9), where d1 and d2 are eigenvalues of SXX, while w1

nd w2 are elements of matrix w = B(x − �x); the rows of B are
igenvectors of SXX. w1 and w2 provide information related to
he orientation of the ellipse, which axes’ lengths are defined
y (d1�2

1−�, r)0.5 and (d2�2
1−�, r)0.5, respectively. The degrees of

reedom (r) of the �2 equal the number of the selected PCs
Section 2.2.6).[(

w2
1

d1�2
1−˛,r

)
+
(

w2
2

d2�2
1−˛,r

)
< 1

]
= 1 − ˛ (9)

.2.8. Bootstrapping procedure for finding the f2 ≤ 50
egion
he mean vector of data a (dissolution profile) of the refer-
(1×t)

nce lot was successively transformed into a new vector d(1×t)

y replacing some of its items with artificial data containing
eviations able to originate f2 values around 50. This proce-
ure was repeated a number of times, and in each case the
a l s c i e n c e s 3 4 ( 2 0 0 8 ) 66–77 69

values of f2 and the PCs of the artificial dissolution curve were
calculated (Efron and Tibshirani, 1986, 1993; Shah et al., 1998;
Adams et al., 2001). Plots of the f2 = 50 ellipses (enclosing the
f2 ≤ 50 region) are shown in the graphics.

2.2.9. Procedure for the comparison of dissolution profiles
Given the data matrices A(q×t) and B(q×t), containing the dis-
solution curves of q tablets each corresponding to the lots of
dosage forms to be compared, taken at the same t time points,
the following five steps are proposed to be sequentially carried
out:

a) Detect outliers in the individual datasets, employing
Hotelling’s test (Section 2.2.5).

b) Construct the matrix X(2q×t), which contains the data of A
and B (2q = p, see Section 2.2.4.2); mean-center (column-
wise) this matrix and carry out the SVD operation on the
resulting matrix Xc(2q×t) (obtain matrices U, S and V).

(c) Select the number of PCs to be retained (Section 2.2.6) and
compute matrix T∗

(p×r).
d) Draw the 95% confidence region (Section 2.2.7), in order to

test the hypothesis of similarity.
(e) Decide about “similarity”, based on the inclusion of the

test data (>80%) in the confidence ellipse of the reference.

3. Results and discussion

3.1. Characteristic features of the proposed PCA-CR
approach

The proposed approach for the assessment of “similarity”
through the PCA-CR analysis of dissolution curves entails five
steps, including (a) detection of outliers in reference and test
data matrices; (b) construction and column mean centering
of a single data matrix containing both data of reference and
test samples, which is submitted to a SVD operation; (c) selec-
tion of the number of PCs to be retained; (d) plotting of the
weighed scores of reference and test lots, and drawing of the
95% confidence region based on scores plot of the reference
lot; (e) “similarity” decision making based on the percentage
of test samples included in the above confidence region.

These sequential steps constitute the appropriate means
for pre-processing, analyzing and visualizing the data, also
establishing a convenient approach for final decision taking.
Hotelling’s test represents a useful strategy for outlier detec-
tion, helping to avoid inclusion of dissolution curves with
exceptionally high variability. On the other hand, PCA is a
mathematical procedure that allows the representation of a
complex set of multivariate data with a reduced number of
new and uncorrelated variables (PCs), which are linear combi-
nations of the original data. In the proposed method, joining
reference and test datasets and carrying out the SVD on a
single matrix allows the optimization of system parameters
leading to an improved projection of the test data in the
reference–test joint data space; therefore, misadjustements

resulting form fitting test data into a pre-established reference
model, are avoided.

By discarding feature elements with low variability, PCA
allows data visualization and the discovery of hidden trends
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Fig. 1 – Dissolution profiles of eight lots of Furosemide
tablets, corresponding to three different brands (A, B and C);
70 e u r o p e a n j o u r n a l o f p h a r m a c

in fewer dimensions. The PCs are ordered according to their
ability to explain data variability, and in the selected examples
discussed below, plot of the weighed scores of the first two PCs
is proposed, as these allow satisfactory reconstruction of the
original data matrix. This approach is much simpler than that
proposed by Tsong et al. (1997), which employs all the PCs for
comparison.

After some trial and error experiments, and taking into
account that “similarity” is a property of the lot and not of
the individual tablets, for decision taking, the following cri-
terion was adopted “test lots are considered to be ‘similar’ if
they contain more than (the arbitrarily chosen value of) 80%
of their tablets (Chen and Tsong, 1997) inside of the 95% con-
fidence region of the reference lot”. The “>80%” requirement
takes into account test data variability, while the 95% confi-
dence ellipse considers variability of the weighed scores in
the reference lot.

In order to assess the usefulness of the proposed method,
the dissolution curves of Acetaminophen and Furosemide
tablets, and two datasets selected from the literature, were
individually analyzed by the PCA-CR methodology and com-
pared with the information provided by the f1/f2 criteria.
Results for each set of data are presented below and discussed
separately.

3.2. Dissolution of Furosemide tablets

Eight lots of Furosemide tablets, corresponding to three differ-
ent brands, A (lots A1, A2 and A3), B (lots B1, B2 and B3) and C
(lots C and C ), were studied, with brand A being the inno-
1 2

vator. The mean percentages of drug released over a 30-min
period are depicted in Fig. 1.

The individual profiles of the eight lots complied with the
FDA requirements for the evaluation of similarity and differ-

Table 1 – Results of the pairwise comparison of eight lots of Fu
similarity (f2) criteriaa

Lot f-Criterion A1 A2 A3

A1 f1 2.7 2.8
f2 78.0 78.4

A2 f1 2.8 1.0
f2 78.0 94.5

A3 f1 2.9 1.0
f2 78.4 94.5

B1 f1 4.0 4.8 4.2
f2 77.0 67.4 68.5

B2 f1 3.6 6.2 5.6
f2 70.7 64.6 67.1

B3 f1 6.1 8.6 8.0
f2 63.5 58.2 60.1

C1 f1 12.7 9.7 10.4
f2 53.7 57.7 55.8

C2 f1 9.7 6.8 7.5
f2 59.2 64.6 61.9

a Letters designate different brands; numbers differentiate between diff
italics.
for the sake of clarity, error bars (<20% for the first time
points; <10% at time points above 6 min) were omitted.

ence; i.e., the tablets dissolved less than 85% of their active
principle in the first 15 min, the data coefficient of variation
(CV%) was less than 20% for the first time points, being less
than 10% for the remaining time points (≥6 min) and the
overall CV% was less than 15%. The corresponding f1 and f2

values were calculated, employing data acquired at 2, 7, 12,
18 and 26 min, taking care that no more than one time point
(26 min) corresponded to more than 85% of dissolved drug.
For the sake of the analysis, all of the possible pairwise lot

comparisons were carried out, with the results consigned in
Table 1.

From the data of Table 1, it follows that when compared
against A1, both additional lots of tablets of brand A (A2 and

rosemide tablets, employing the difference (f1) and

B1 B2 B3 C1 C2

4.0 3.7 6.5 11.3 8.9
77.0 70.7 63.5 53.7 59.2

5.0 6.6 9.4 8.8 6.4
67.4 64.6 58.2 57.7 64.6

4.3 5.9 8.7 9.4 7.0
68.5 67.1 60.1 55.8 61.9

4.8 6.1 11.6 9.2
74.1 67.4 51.3 56.2

4.7 2.6 14.5 12.1
74.1 84.1 46.9 51.1

5.7 2.6 16.7 14.4
67.4 84.1 43.9 47.4

13.1 16.9 20.0 2.7
51.3 46.9 43.9 81.1

10.1 13.8 16.8 2.6
56.2 51.1 47.4 81.1

erent lots of the same brand. Non-complying figures are shown in
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Fig. 2 – Weighed scores plot for the PCA-based pairwise comparison between dissolution data of reference (�) and test (�)
lots of Furosemide. (a) A1–A2; (b) A1–B1; (c) A1–B2; (d) A1–C1; (e) A1–C2; (f) C1–C2; (g) B2–C1; (h) B3–C1; (i) B3–C2. The 95%
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onfidence region (—), as well as the f2 = 50 ellipse (–+–) and
re also shown.

3) exhibited acceptable difference (2.7 and 2.8) and similar-
ty (78.0 and 78.4) results; analogously, the parameters for the
hree lots of brand B (f1 = 3.7–6.5 and f2 = 63.5–77.0) indicated
hat they should be considered similar to A1. The f1/f2-test also
uggested that tablets of brand B were similar among them
nd with brand A. On the other hand, although complying
ith the requirements for similarity when compared against

he tablets of brand A, brand C exhibited a different range of

1/f2 values (f1 = 6.4–11.3 and f2 = 53.7–64.6), which shifted more
owards non-compliance when analyzed against the data of
ot B1 (f1 = 9.2–11.2 and f2 = 51.3–56.2). This trend was more
learly evidenced when they were tested against lots B2 and

3, furnishing in some cases non-complying values. Interest-
ngly, both lots of brand C demonstrated to be similar to each
ther (f1 = 2.6, 2.7 and f2 = 81.1). Among the tested lots, both
-factors allowed to arrive at the same conclusion, except in
he case of the B2–C1 comparison, where the f1 estimator sug-
ested “similarity”, while its f2 counterpart indicated that the
ots were not similar.
To evaluate the performance of the PCA-CR method,
otelling’s test was run and, since no outliers were detected,

he weighed scores of the first two PCs of pairs of Furosemide
ots were plotted, with selected results shown in Fig. 2. Each
eans of the PC scores of the reference (�) and test (�) lots

plot displays the corresponding 95% confidence ellipse and the
coordinates of the mean values of the weighed scores of the
reference and test lots. The regions where most of the samples
would exhibit f2 = 50, calculated employing the bootstrapping
technique, are also included (Shah et al., 1998).

The images clearly show that lots A2, B1 and B2 can be con-
sidered similar to A1 (Fig. 2a–c), despite that one of the samples
of lot B2 falls out of the 95% confidence region (Fig. 2c). On the
other hand, and contradicting f1/f2 predictions, non-similarity
between A1 and both batches of brand C tablets is evident,
despite of the fact that C1 and C2 exhibit similarity to each
other (Fig. 2f). However, since in the A1–C1 comparison only
four tablets of the test lot fall outside of the 95% confidence
ellipse, should a multiple stage acceptance rule be in practice
(Tsong et al., 1995; USP Convention, 2007), lot C1 could per-
haps be considered for a second stage. This instance, while
representing a less demanding standard than the single stage
PCA-CR method, may still be more discriminant than the f1/f2-
criteria. As expected, comparison between lots B and C clearly

evidenced non-similarity despite that some of the observed f2

values (>45) were relatively close to the lower acceptable limit.
The similarity and difference factors appear to be simple

and easy to be calculated; perhaps this is the key for their
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Fig. 3 – (a) Dissolution profiles of three different brands of
Acetaminophen tablets. (b) Dissolution profiles of three
standard lots (A1–3) and a new lot (B). Data were taken from

f2 = 50 ellipses, calculated under bootstrap assistance. This is
because, unlike the f2 procedure, the size of the confidence
ellipses is related to the variability of the data in the reference
samples as well as to size and shape of the dissolution curves.

Table 2 – Results of the pairwise f1/f2 comparison of
three lots of Acetaminophen tabletsa

Brand f-Criterion A B C

A f1 7.4 20.0
f2 65.8 43.2

B f1 7.9 15.2
f2 65.8 47.4
72 e u r o p e a n j o u r n a l o f p h a r m a c

adoption by the industry, despite that they impose restric-
tions to the quality of the data to be used (not more than one
point above 85% dissolution and specific limits to the CV% at
different points of the dissolution profile), and their outcome
exhibit some dependence upon the number and position of
time points employed (Polli et al., 1997). The similarity func-
tion f2 has been severely criticized by several authors (Eaton
et al., 2003) arguing that it also lacks statistical justification
(Tsong et al., 1996; Shah et al., 1998; Ma et al., 1999; Chow and
Shao, 2002), and performs unnecessary use of the logarithmic
reciprocal square root transformation, which makes its statis-
tical distribution very complicated and almost intractable (Liu
et al., 1997).

Contrarily, the proposed PCA-CR method offers a sim-
ple graphical and analytical way to decide about similarity,
employing sound mathematical and statistically based proce-
dures. In addition, it is able to make use of all the available
data points, regardless the amount of drug dissolved and data
variability. This is highly advantageous, since it provides a bet-
ter appreciation of the dissolution behaviour of the lots being
compared.

The PCA-CR results for lots A and B showed good agree-
ment with the outcome of the corresponding determinations
of f1 and f2; however, both methods provided different conclu-
sions for the comparison between lots A and C. In the f-test,
brand C exhibited compliance but f1 (>6.0) and f2 values (<60)
were observed to fall in a different range than those of brands
A and B. This borderline compliance of both lots of brand C
in the f2-test and non-compliance with the PCA-CR method
reflects the fact that the latter method represents a slightly
rigorous standard than the f-based approach, being perhaps
anticipating non-similarity, as detected when brands B and C
were compared.

Both the f-based and the PCA-CR methods revealed a closer
likelihood of brand C towards brand A than with regards to
brand B. In fact, the f-based A–C comparison suggested “sim-
ilarity”, while the B–C comparison indicated “non-similarity”
in the B1/B2–C1/C2 cases; analogously, in the case of the PCA-
CR counterpart, while concluding for “non-similarity” in every
case, fewer points remained outside the 95% confidence region
in the A–C comparisons (Fig. 2c and d) than in the B–C com-
parisons (Fig. 2g–i). On the other hand, as in the f-based
comparison, both lots C – of analogous shape and size – were
considered similar to each other, despite not being able to
achieve “similarity” with the A1 reference lot.

Interestingly, significant correlations were obtained when
the number of data points left out of the confidence ellipses
were plotted against f1 or f2 values. However, despite being cor-
related to the f-factors, the PCA-CR represents a more rigorous
standard, being devoid of some of their major drawbacks.

3.3. Dissolution of Acetaminophen tablets

Fig. 3a displays the dissolution profiles of three different
brands of Acetaminophen tablets, and Table 2 contains the
f /f values of all possible brand-to-brand comparisons, pre-
1 2

pared with data taken at 6, 10, 14, 30 and 45 min.
According to the f-criteria, only brands A and B should be

considered “similar”. After running the outlier detection test
and demonstrating the suitability of all the dissolution curves,
Tsong and Hammerstrom (1994). For the sake of clarity,
error bars (<10% at all the time points) were omitted.

it was observed that this result was in perfect agreement with
the conclusions emerging from application of the proposed
PCA-CR method (Fig. 4a).

Regarding brand C, it exhibited non-complying f1 and f2

values, with the data suggesting a possible borderline situa-
tion for the B vs. C comparisons (f1 = 15.2 and 17.7; f2 = 47.4).
Although the latter seemed amenable for a second stage test-
ing, in case of employing a multiple stage acceptance rule
(Tsong et al., 1995; USP Convention, 2007), the PCA-CR weighed
scores plot demonstrated beyond doubt that brand C was
unable to achieve the “similarity” requirements at this stage
(Fig. 4c), not qualifying for further “similarity” testing. The
same “non-similarity” conclusion was obtained after compar-
ing brands A and C (Fig. 4b). For the sake of discussion, the B–A
comparison is also shown (Fig. 4d); despite that the conclusion
about “similarity” agrees with the f-based prediction, owing
to different data variability within the reference brand (B), the
test brand (A) exhibits two borderline dissolution curves.

Interestingly, areas of the 95% confidence ellipses not
always were smaller in size than areas enclosed by the
C f1 25.0 17.7
f2 43.2 47.4

a Non-complying figures are shown in italics.
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Fig. 4 – Scores plot for PCA-based pairwise comparison between dissolution data of reference (�) and test (�) brands of
Acetaminophen tablets. (a) A–B; (b) A–C; (c) B–C; (d) B–A. The 95% confidence ellipses (—), the region enclosing acceptable f
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≤50) values (–+–) and the means of the PC scores of the refe

.4. Dissolution data of Tsong and Hammerstrom

hese dissolution data (Fig. 3b) have been previously employed
n different cases for dissolution profile comparisons (Chen
nd Tsong, 1997; Tsong et al., 1997). All of the f1/f2 possible
airwise comparisons between the three standard lots (A1–A3)
nd a fourth lot (B) are consigned in Table 3. The results indi-
ate that the lots have “similar” dissolution characteristics,
hichever of them is taken as reference. Noticeably, however,

he f2 values for test lot B against the lots A are in a markedly
ifferent range (63.5–64.7) from those of the lots A, when tested

gainst each other (90.3–94.6).

No outlier curves were found in the dataset. Plots of the
eighed scores of the first and second PCs of the three pre-
pproved batches (A1, A2 and A3) and test batch B are depicted

Table 3 – Results of the pairwise comparison of standard
lots A1, A2 and A3, and a new lot (B), employing the f1
and f2 criteria

Lot f-Criterion A1 A2 A3 B

A1 f1 1.6 1.2 1.5
f2 90.3 91.2 63.8

A2 f1 1.6 0.4 3.1
f2 90.3 94.6 63.5

A3 f1 1.2 0.4 2.7
f2 91.2 94.6 64.7

B f1 1.5 3.0 2.7
f2 63.8 63.5 64.7
2

(�) and test (�) brands, are also shown.

in Fig. 5. Here, all the PCA-based comparisons of the former
demonstrated their similarity, despite that the A1–A2 compar-
ison plot exhibited two tablets of the test lot out of the 95%
confidence ellipse and those of A2–A3 and A1–A3 showed one
tablet each, out of the confidence region.

On the other hand, pairwise comparison of batches A1

and A2 with test batch B, revealed that the latter could
not be considered “similar” to any of the former two, sur-
prisingly complying with similarity requirements only with
batch A3, mainly due to its particular data variability. Despite
that the f1/f2 criteria suggest similarity between all of the
dissolution profiles, this is somehow in agreement with con-
clusions reached by Tsong and co-workers on the grounds
of Mahalanobis distance-based multivariate region specifi-
cation criteria (Chen and Tsong, 1997), and on the basis of
confidence intervals of the characteristic parameters (˛ and
ˇ) of a Weibull curve fit (Tsong et al., 1997). The bootstrap-
calculated acceptable values of the corresponding f2 test
shown in Fig. 5 reveals that, being of a more permissive nature,
the f2 factor estimation also supports the conclusion of lot
similarity.

The graphical result of the A1–A2 comparison (and those
of A2–A3 and A1–A3 to a minor extent) can be attributed
to higher tablet data variability within the latter lot, com-
pared with the reference. Since the lengths of the axes of
the ellipse are related to the eigenvalues of the covariance
matrix, the confidence region is sensitive to variability of

the reference data; therefore, it should be made possible for
some samples of the test lot to remain outside the confidence
region due to their own (and sometimes higher) variability,
as proposed.
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Fig. 5 – PCA-based comparisons [reference (�) and test (�)] between standard batches A1, A2 and A3, as well as with a new
test batch (B). Data were taken from Tsong and Hammerstrom (1994). (a) A1–A2; (b) A2–A3; (c) A1–A3; (d) A1–B; (e) A2–B; (f)
A3–B. Confidence ellipse of 95% (—), the f2 = 50 ellipse (–+–), and the means of the PCs of the reference (�) and test (�) lots are

the different time points (10.6, 9.9, 5.7 and 1.6%) were differ-
ent from those of the reference batch, being data dispersion
of the latter comparatively smaller (6.7, 4.8, 3.8 and 2.9%).
Tentatively, this can provide an explanation to the PCA-CR

Table 4 – Comparison of the dissolution profiles of
pre-change batch A with five post-change lots, according
to the f1/f2 criteria
also shown.

To take into account data variability is another important
feature of the PCA-CR method, in sharp contrast with the f2

criterion, which is a function of mean differences, and has
been criticized for not computing variability within the test
and reference data. Not without reason, authors have recom-
mended careful interpretation of f2 results when the variances
of the individual profiles are very different (Saranadasa and
Krishnamoorthy, 2005).

Considering that the confidence region in the proposed
method represents a tighter standard than the f1/f2 indicators,
the allowance of up to 20% of the samples to fall outside of the
95% confidence ellipse represents a compromise which trans-
forms the proposed PCA-CR method into a less restrictive tool
and a test procedure with pharmaceutical significance, still
remaining diagnostic of “similarity”.

3.5. Pre- and post-change dissolution data of Shah et
al. (1998)

The dissolution data of one pre-change and five post-change
batches are shown in Fig. 6a, with the f /f results of the post-
1 2

change batches against the pre-change sample consigned in
Table 4. Many results (three out of five for f1 and four out of
five for f2) seem to be borderline (f1 > 13 or f2 < 60). However,
despite the differences among the curves and according to
the f-criteria, all of the post-change batches comply with the
requirements for “similarity”.

In their study of this dataset employing bootstrap tech-
niques, Ma et al. concluded that, depending on the estimators
employed, only batch B or batches B and E could be consid-
ered “similar” to the pre-change batch A (Ma et al., 2000). The
PCA-CR analysis of the data was run after assuring absence of
outliers. Interestingly, however, this revealed that even batch
B does not met the “similarity” requirements, displaying five
out of its 12 data points out of the confidence ellipse.

Closer inspection of the dissolution curves of batches A
and B indicated that the CV% of the curves of batch B at
f-Criterion/lot B C D E F

f1 8.8 13.3 13.6 7.4 13.8
f2 67.1 58.4 58.7 57.5 55.4
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Fig. 6 – (a) Dissolution profiles of (A) pre-change batch; (B) post-change batch 1; (C) post-change batch 2; (D) post-change
batch 3; (E) post-change batch 4; (F) post-change batch 5. Data were taken from Shah et al. (1998). (b–f) PCA-based
c batc
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omparisons [reference (�) and test (�)] between pre-change
onfidence ellipses (—), the f2 = 50 ellipses (–+–), and the mea

on-similarity result, on account of the sensitivity of the
ethod to data variability, particularly in the reference lot.

ndeed, the multivariate test allows to conclude that despite
he seemingly analogous shapes of the reference and test pro-
les, the individual dissolution curves in both batches being
ompared behave different, hence, “similarity” criteria could
ot be reached.

When dissolution profiles of pre-change batch A and post-
hange batch E were compared, it was evident that except for
he first time point (where batch E also exhibits considerably
ess drug dissolved than batch A), both have similar CV% (15.0,
.8, 3.8 and 2.8% for batch E); however, since PCA-CR is sensi-
ive to shape and size of the dissolution curves (Adams et al.,
001), batch E was also correctly interpreted by the multivari-
te method as possessing a “non-similar” profile.

.6. Method flexibility

he need for counting at least 80% of the test tablets (Chen
nd Tsong, 1997) inside of the 95% confidence ellipse of the
eference lot constitute arbitrary criteria for assessing “simi-
arity”, which relate to the strictness of the proposed method

ith regards to decision taking. In this sense, PCA-CR repre-

ents a more rigorous standard than the f-based comparison.
owever, the proposed approach is flexible enough, so these
roposed specifications do not rule out alternative combina-
ions of confidence levels for the ellipses and number of test
h A and post-change batches 1–5, respectively. The 95%
the PCs of the reference (�) and test (�) lots are also shown.

tablets allowed to remain outside of the confidence region,
which might be set according to the experience or specific
needs. Boostrap studies are suitable means to provide evi-
dence for this fine-tuning of the method.

4. Conclusions

In summary, the use of the weighed scores plot of the rele-
vant principal components of the dissolution curves with 95%
confidence regions (PCA-CR) has been proposed as a new and
alternative strategy for the comparison of in vitro dissolution
profiles of tablet preparations. The results observed with this
multivariate approach exhibited good qualitative correlation
with the f1 and f2 values computed from the dissolution pro-
files; however, conclusions regarding profile similarity were
not always coincident.

This was mainly due to the facts that the proposed method
is more discriminating, taking into account data variabil-
ity within the reference lot in order to build the confidence
ellipses. Variations within the test lot, as well as shape and
size of the dissolution curves have also influence on the final
result.

Unlike the f /f methods, based on comparison of data
1 2

means, the use of confidence ellipses built upon PC values
of the individual tablet dissolution curves of the reference set
allows a simple and rapid graphic assessment of data distri-
bution. In addition, the proposed approach does not impose
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restrictions to useful data in terms of their variability and
number of allowed time points above a given degree of disso-
lution; making use of the all the available information, avoids
data-dependent outcomes, a characteristic feature of the f-
based methods.

Compared to previously reported PCA-based methodolo-
gies, the SVD operation carried out on a single matrix
containing test and reference data allows the optimization of
system parameters in such a way that an improved projec-
tion of the test data in the joint reference–test data space is
achieved.

The use of boostraping techniques for the representation
of the f2 = 50 frontiers in the PCA scores’ space, and their
comparison with the region enclosed by the 95% confidence
ellipses clearly demonstrated the relationship between the
official and the proposed methodologies, revealing the poten-
tial of PCA-CR under the proposed conditions, as a stricter but
still useful tool for providing pharmaceutically sound results
in the assessment of “similarity” between different batches of
the same product, or products of different brands containing
the same active ingredient.

The proposed approach is dependable, it can be eas-
ily implemented and profile comparison results are quickly
obtained; with minor modifications, it could also be adapted
to a multiple stage acceptance rule, as given in the USP.
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