Electrocyclization-Mediated Approach to 2-Methyltriclisine, an Unnatural Analog of the Azafluoranthene Alkaloid Triclisine

Claudio C. Silveira, ${ }^{[a]}$ Enrique L. Larghi, ${ }^{[b]}$ Samuel R. Mendes, ${ }^{[a]}$ Andrea B. J. Bracca, ${ }^{[b]}$ Francieli Rinaldi, ${ }^{[a]}$ and Teodoro S. Kaufman* ${ }^{[b]}$

Keywords: Synthesis design / Nitrogen heterocycles / Natural products / Alkaloids / Azafluoranthenes / Electrocyclization

Abstract

The synthesis of 2-methyltriclisine, an unnatural analog of the azafluoranthene alkaloid triclisine, is reported. The synthesis was achieved in 10 steps and 21% overall yield from 2-bromo-3,4-dimethoxybenzaldehyde, through the intermediacy of 3,4-dimethoxyfluoren-9-one. Construction of the heterocyclic ring entailed the para-Claisen rearrangement of

Abstract

an allyl-4-fluorenyl ether, followed by isomerization of the resulting 2 -allylfluoren-9-one and a microwave-assisted electrocyclization of the aza 6π-electron system formed by oximation of its carbonyl function.

(© Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, Germany, 2009)

Introduction

The azafluoranthenes are ubiquitous in nature; the parent bases have been found in coal tar, cigarette smoke, river and lake sediments and also as air pollutants in street dust. ${ }^{[1]}$ Being nitrogen-containing polycyclic aromatic compounds, these heterocycles are also considered among the environmental priority contaminants. ${ }^{[2]}$

The azafluoranthene alkaloids are a small and unique class of naturally occurring compounds containing the in-deno[1,2,3-ij]isoquinoline motif (1a, Figure 1); ${ }^{[3]}$ it includes the non-phenolic tetracycles rufescine (1b), imeluteine (1c) and triclisine (1d), ${ }^{[3 b]}$ isolated from the Amazonian vines Abuta rufescens, A. imene and Triclisia gilletii (Dewild) Staner (Menispermaceae), respectively.

In addition, norrufescine (1e), found in A. rufescens, A. imene and Telitoxicum peruvianum, together with telitoxine (1f), isolated from T. peruvianum and T. glaziovil ${ }^{[3 \mathrm{cc}]}$ and norimeluteine ($\mathbf{1 g}$) obtained from the tropical climbing shrub Cissampelos pareira, ${ }^{[3 \mathrm{~d}]}$ constitute the phenolic members of this family.

These compounds share some structural features with the naturally occurring 2,7-diazafluoranthenes like eupolauridine (2a) and its N-oxides $\mathbf{2 b}$, 2c that can be found in Annonaceae, as well as with the less widespread stephaoxocanes, such as stephaoxocanidine (3a) and eletefine (3b)

[^0]

1a: $R^{1}=R^{2}=R^{3}=R^{4}=R^{5}=R^{6}=R^{7}=H$ 1b: $R^{1}=R^{2}=R^{3}=R^{5}=O M e, R^{4}=R^{6}=R^{7}=H$ 1c: $R^{1}=R^{2}=R^{3}=R^{4}=R^{5}=\mathrm{OMe}, R^{6}=R^{7}=H$

2a: $R^{1}=R^{2}=$: 2b: $R^{1}=: R^{2}=0$ 2c: $R^{1}=R^{2}=0$
1d: $R^{1}=R^{4}=R^{5}=R^{6}=R^{7}=H, R^{2}=R^{3}=O M e$

1e: $R^{1}=R^{2}=R^{3}=O M e, R^{4}=R^{6}=R^{7}=H, R^{5}=O H$
1f: $R^{1}=R^{4}=R^{6}=R^{7}=H, R^{2}=R^{3}=O M e, R^{5}=O H$
1g: $R^{1}=R^{2}=R^{3}=R^{4}=O M e, R^{5}=O H, R^{6}=R^{7}=H$
1h: $R^{1}=R^{2}=R^{3}=R^{5}=R^{6}=R^{7}=O M e, R^{4}=R^{6}=R^{7}=H$

4a: $R=H$
4b: $R=M e$

3a: $R=H$
3b: $\mathrm{R}=\mathrm{OMe}$

Figure 1. Chemical structures of indeno[1,2,3-ij]isoquinoline (1a), the azafluoranthene alkaloids $\mathbf{1 b} \mathbf{- g}$ and related natural products, including the eupolauridines $\mathbf{2 a - c}$, stephaoxocanes $\mathbf{3 a}, \mathbf{b}$ and tropolo-isoquinolines $\mathbf{4 a}, \mathbf{b}$.
and the tropolo-isoquinolines, exemplified by grandirubrine (4a) and imerubrine (4b). ${ }^{[4]}$ Compounds carrying the latter two skeletons have been isolated from Menispermaceous plants, including species which are also sources of azafluoranthene alkaloids. ${ }^{[5 a]}$ Furthermore, azafluoranthene derivatives have been prepared as part of some synthetic efforts toward tropolo-isoquinolines. ${ }^{[5 b, 5 \mathrm{c}]}$

The azafluoranthene alkaloids display various properties of biological and technological interest. They have been patented as constituents of wound-healing agents ${ }^{[6 a]}$ and have been reported to possess antidepressant activity. ${ }^{[6 b]}$ In addition, compounds 1 e and $\mathbf{1 g}$ were isolated with the aid of a bioassay guided fractionation, monitoring the cytotoxicity against $P-388$ cells and demonstrated to be active at $5.8 \mu \mathrm{~g} / \mathrm{mL}$ and $3.6 \mu \mathrm{~g} / \mathrm{mL}$, respectively, ${ }^{[3 \mathrm{~d}]}$ while related 4azafluoranthene derivatives have been shown to act as 5hydroxytryptamine subclass 3 receptor $\left(5-\mathrm{HT}_{3}\right)$ agonists. ${ }^{[\mathrm{cc]}}$

Furthermore, as part of their efforts aimed to develop new approaches to discotic liquid crystals, which form tilted columnar phases with ferroelectric properties, Scherowsky et al. synthesized the azafluoranthene derivative $\mathbf{1 h}$ and determined its crystal structure, confirming the suitability of the tetracycle for the formation of discotic phases. ${ }^{[7]}$

The main synthetic approach used toward azafluoranthenes has been the Pschorr-type cyclization of 1-(2-ami-nopheny1)-3,4-dihydro- and 1,2,3,4-tetrahydro-isoquinoline derivatives. ${ }^{[8]}$ Other strategies have included the use of 8 -phenylisoquinolin-1-one intermediates, ${ }^{[9 a]}$ the inverse electron demand Diels-Alder reaction of 3-methoxycarbonyl-2-pyrones ${ }^{[9 b]}$ and an aza-Wittig reaction in tandem with an intramolecular oxidative biaryl coupling under promotion of vanadium reagents, ${ }^{[9 \mathrm{e}]}$ as well as metallation cross-coupling ${ }^{[9 c]}$ and photochemical ${ }^{[9 \mathrm{dd}]}$ reaction schemes. Interestingly, some unsuccessful attempts have also been disclosed. ${ }^{[10]}$

In pursuit of our interest in the elaboration of polycyclic tetrahydroisoquinoline-type natural products, their derivatives ${ }^{[11]}$ and bioactive analogs, ${ }^{[12]}$ herein we report the synthesis of 2-methyltriclisine (5), an unnatural analog of triclisine (1d), from the known 3,4-dimethoxyfluoren-9-one (8) and a new synthesis of this tricyclic ketone. The reaction sequence toward 5 features the electrocyclization reaction of an aza 6π-electron system as the final key transformation, which involves formation of the N-2C bond. Synthesis of isoquinoline derivatives based on the formation of this bond is still one of the less exploited strategic alternatives toward constructing these heterocyles; however, it is currently receiving considerable attention. ${ }^{[13]}$

Results and Discussion

As shown in the retrosynthetic analysis of $\mathbf{5}$ depicted in Scheme 1, we envisioned that our target could be obtained from oxime derivative 6; in turn, it was considered that this intermediate would be accessed from fluoren-9-one 7, through a sequence which should include the Claisen rearrangement of its allyl ether moiety, as well as O-methylation and oximation of the fluoren-9-one carbonyl. Finally, 7 could be reached from the known fluoren-9-one 8. ${ }^{[14]}$

However, among the reported routes toward 8, the most efficient one furnished the fluorenone in six steps and approximately 60% overall yield, from 2,3,4-trimethoxybenzoic acid. ${ }^{[14 a]}$ We concluded that this sequence was excessively long, partly because of the need of introducing and

5

Scheme 1. Retrosynthetic analysis of 2-methyltriclisine (5).
removing activating and protecting groups. Threrefore, and taking into account the technological and biomedical importance of fluoren-9-ones, their usefulness as synthetic intermediates and their occurrence as natural products, ${ }^{[15]}$ we also decided to devise a new strategy toward 8.

Despite that a number of different approaches to flu-oren-9-ones have been reported, the most useful ones belong to either one of two groups. The first one (route a) involves formation of the five-membered ring by closure of a properly functionalized biphenyl intermediate (9), usually through an intramolecular acylation, while the second and comparatively less explored group consists of the intramolecular arylation (route b) of a suitably activated benzophe-none-type precursor (10). ${ }^{[16]}$

We conjectured that for our purpose, in either case known aldehydes 11a, ${ }^{[17 \mathrm{a}, 17 \mathrm{~b}]}$ readily available in gram quantities from isovanillin (11c) through its selective orthohalogenation, followed by a Williamson etherification of the free phenol, would be appropriate starting materials. The high atom efficiency of transition metal-mediated "direct" arylations inclined us toward exploring the intramolecular arylation alternative.

Therefore, the synthesis (Scheme 2) began with the treatment of iodoaldehyde 11a ${ }^{[17 \mathrm{a}]}$ with phenylmagnesium bromide. This furnished 85% of benzhydrol 12a, which once oxidized with PDC, gave 93% of benzophenone derivative 10a, setting the stage for the exploration of the direct palla-dium-catalyzed intramolecular biaryl coupling. ${ }^{[18]}$

Scheme 2. Reagents and conditions: a) $\mathrm{PhMgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow$ r.t. (12a, 85%; 12b, 94%); b) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 15 h (10a, 93%; 10b, 92%; c) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, DavePhos (13), KOAc, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMA, $110^{\circ} \mathrm{C}, 22 \mathrm{~h}(\mathbf{1 0 a} \rightarrow \mathbf{8}, 34 \% ; \mathbf{1 0 b} \rightarrow \mathbf{8}, 88-96 \%)$.

However, when cyclization of $\mathbf{1 0 a}$ was attempted using the $\mathrm{Pd}(\mathrm{OAc})_{2}$-triethanolamine reagent system, ${ }^{[19]}$ the dehalogenated starting material (10c) ${ }^{[17 c]}$ was obtained as the sole product in 84% yield (Table 1). On the other hand, submission of 10a to cyclization in dimethylacetamide (DMA) under $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalysis, employing DavePhos (13) as ligand in the presence of a mixture of KOAc and $\mathrm{K}_{2} \mathrm{CO}_{3}$, gave only 34% yield of $\mathbf{8}$, along with 19% of the dehalogenated benzophenone 10c, which hindered the purification of the cyclized product.

Taking into account that iodide salts have been found to exert a poisoning effect in the direct arylation reaction, ${ }^{[20 a]}$ the analogous bromoaldehyde $\mathbf{1 1 b}^{[17 \mathrm{~b}]}$ was employed as starting material for a similar reaction sequence, furnishing benzophenone 10b in 87% overall yield. To our satisfaction, after several attempts it was observed that submission of 10b to the $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed cyclization in DMA, employing ligand $\mathbf{1 3}$ in the presence of a mixture of KOAc and $\mathrm{K}_{2} \mathrm{CO}_{3}$, smoothly and consistently afforded $\mathbf{8}$, in yields ranging from 88 to 96% after heating 22 h at $110{ }^{\circ} \mathrm{C}$. Con-
siderably reduced yields were observed, in the absence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, while use of $\mathrm{Pd}(\mathrm{OAc})_{2}$ as source of palladium resulted in complete decomposition of the starting material when triethanolamine was employed as solvent.

The cyclization reaction of aldehydes $\mathbf{1 0 a}, \mathbf{b}$ to furnish $\mathbf{8}$ probably proceeds through the initial oxidative addition of the palladium catalyst to the starting aryl halide to afford an arylpalladium halide intermediate (A), the $\mathrm{Pd}^{\mathrm{II}}$ center of which would then undergo intramolecular nucleophilic attack by the phenyl moiety, yielding complex B after deprotonation, as first suggested by the group of Miura. ${ }^{[20 b-20 d]}$

Then, reductive elimination of Pd^{0} from complex B should result in formation of the required biaryl bond and release of the catalyst. Being an electron-rich ligand, the bulky Buchwald's phosphane $\mathbf{1 3}$ may facilitate both, the oxidative addition step and also dissociation of the halide, yielding a more reactive cationic palladium(II) species (A).

Having secured a short and efficient access of fluoren-9one 8, we turned our attention to the task of dealkylating its 4 -OMe group. Sodium alkyl sulfides have gained general acceptance as efficient and selective agents for dealkylation of methyl ethers. ${ }^{[21]}$ Not quite unexpectedly, when $\mathbf{8}$ was submitted to reaction with sodium ethyl sulfide in DMF, a 60:40 inseparable mixture of both possible mono-methyl ethers 14a and $\mathbf{1 4 b}$, as assessed by ${ }^{1} \mathrm{H}$ NMR integration of the signals of their methyl ether moieties, was smoothly obtained in 92% combined yield (Scheme 3).

Interestingly, however, despite that the stabilizing effect on the phenoxide intermediate resulting from dealkylation of a methyl ether ortholpara to an electron-withdrawing group has been invoked as a factor that may facilitate a second O-demethylation process, ${ }^{[22 a]}$ in this case the bis-demethylated product could not be detected.

The observed product ratio is also interesting, given the apparent key role that electronic factors play in the selectivity of this process, which is particularly prone to dealkyate methyl ethers located ortho or para to electron-withdrawing groups. ${ }^{[22 b]}$ The preferred demethylation of the ortho-disubstituted methyl ether moiety ${ }^{[23 a, 23 b]}$ could arise from the out-of-plane preferred conformation adopted by the methyl group in these compounds, which may facilitate their reac-

Table 1. Optimization of the direct arylation reaction.

Starting material	Pd source	Reagents and conditions	Product (\% yield)
10a	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, microwave, $120^{\circ} \mathrm{C}$, 10 min	10c (84)
10a	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	KOAc, $\mathrm{K}_{2} \mathrm{CO}_{3}, 13$, DMA, $110{ }^{\circ} \mathrm{C},{ }^{[\mathrm{a}]} 23 \mathrm{~h}$	8 (34)
10b	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, microwave, $120^{\circ} \mathrm{C}$, 30 min	deccomposition
10b	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	KOAc, 13, DMA, $135{ }^{\circ} \mathrm{C}$, ${ }^{\text {[a] }} 4 \mathrm{~h}$	8 (56)
10b	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	KOAc, $\mathrm{K}_{2} \mathrm{CO}_{3}, 13$, DMA, $110^{\circ} \mathrm{C}$, ${ }^{\text {[a] }} 22 \mathrm{~h}$	8 (88-96)

[a] Bath preheated at the designated temperature.

Scheme 3. Reagents and conditions: a) NaH , EtSH, DMF, $50^{\circ} \mathrm{C}$, 17 h ($\mathbf{1 4 a} / \mathbf{1 4 b}=60: 40$); b) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}$, EtOH , reflux, $90 \mathrm{~min}\left(7,52 \% ; \mathbf{1 5}, 33 \%\right.$, from 8); c) $1,2-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$, reflux, 12 h (80%).
tion with the sulfur nucleophile. Unfortunately, use of the more hindered sodium tert-butyl sulfide did not provide better selectivity, furnishing at best a 1.07:1 ratio of monomethyl derivatives, in 68% combined yield after conducting the reaction 10 h at $50^{\circ} \mathrm{C}$.

Without further purification, the mixture of phenols $\mathbf{1 4 a}, \mathbf{b}$ was treated with allyl bromide and anhydrous potassium carbonate in absolute EtOH, yielding 7 and $\mathbf{1 5}$ in 52% and 33% overall yield, respectively, after chromatographic separation. Unequivocal identification of both pair of compounds, the phenols $\mathbf{1 4 a}, \mathbf{b}$ and their corresponding allyl ethers 7 and 15 was aided by the clearly evident $4-5 \mathrm{ppm}$ downfield shift of the methyl carbon atom in the fluoren-9ones $\mathbf{1 4 b}$ and $\mathbf{1 5}$, which bear an ortho disubstituted methyl ether. ${ }^{[23 b, 23 c]}$

Next, the projected para-Claisen rearrangement of 7 was performed. Despite that microwave heating of the allyl ether in $1,2-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\left(180^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ and in $\mathrm{Ph}_{2} \mathrm{O}\left(180^{\circ} \mathrm{C}, 80 \mathrm{~min}\right.$ or $260^{\circ} \mathrm{C}, 20 \mathrm{~min}$) furnished rearranged products in acceptable yields, the best results were achieved by submitting the allyl ether to conventional reflux in $1,2-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$. This gave allylfluorenone derivative $\mathbf{1 6}$ in 80% yield. The product, which displayed $2-\mathrm{H}$ as a singlet in its ${ }^{1} \mathrm{H}$ NMR spectrum ($\delta_{\mathrm{H}}=6.46 \mathrm{ppm}$), was uneventfully alkylated under standard conditions (Scheme 4), with MeI in refluxing EtOH to which excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, giving 1-allylfluoren-9-one 17 in 92% yield.

In order to elaborate the heterocyclic ring, two alternatives were considered. One of them included the established thermal electrocyclization of an ortho-propenyl oxime, ${ }^{[24]}$ while the second possibility consisted in the palladium-catalyzed cyclization of an oxime derived from the the 1-allylfluorenone derivative 17, as described by Tsutsui and Narasaka. ${ }^{[25]}$ The latter transformation does not seem to imply isomerization of the allyl moiety and electrocyclization of the resulting intermediate; however, since its reported yields were only moderate, the first alternative was pursued.

Therefore, the allyl moiety of $\mathbf{1 7}$ was first isomerized with $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ during $60 \mathrm{~h}^{[26]}$ to give

Scheme 4. Reagents and conditions: a) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$, reflux, $2 \mathrm{~h}(92 \%)$; b) $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $60 \mathrm{~h}(90 \%)$; c) $\mathrm{H}_{2} \mathrm{NOMe} \cdot \mathrm{HCl}, \mathrm{NaOAc}, \mathrm{EtOH}, 2 \mathrm{~h}(95 \%)$; d) $1,2-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$, microwave ($115 \mathrm{~W}, 180^{\circ} \mathrm{C}$), $60 \mathrm{~min}(81 \%)$.
90% of the 1-propenyl-fluorenone derivative $\mathbf{1 8}$ as a single isomer to which the E configuration was attributed, on the basis of the observed coupling constants between its vinylic protons ($J=15.9 \mathrm{~Hz}$).

Secondly, 18 was subjected to oximation with methoxylamine hydrochloride, furnishing 89% of the corresponding N-methoxy oxime 6a. Interestingly, again only one isomer was detected, to which the anti stereochemistry was assigned on the basis that this configuration avoids the steric congestion between the vinylic protons of the propenyl group and the methoxy moiety of the oxime.

Finally, submission of the 1-azatriene 6a to the proposed microwave-assisted electrocyclization reaction, smoothly furnished the expected final product 5 . The best results were obtained when the transformation was carried out in 1,2-$\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$, where 81% yield of product was obtained, after heating at $180^{\circ} \mathrm{C}$ during 1 h .

A detailed spectroscopic analysis of 5 was carried out, based on evidences provided by HMQC, HMBC and selective NOE experiments, which allowed the unequivocal assignment of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances.

The observation of signal enhancement of 7-H upon irradiation of the 6-OMe group in the NOE experiment, unambiguously located the chemical shift of $7-\mathrm{H}$; this also allowed to establish that $5-\mathrm{OMe}\left(\delta_{\mathrm{H}}=3.97 \mathrm{ppm}\right)$ is more shielded than $6-\mathrm{OMe}\left(\delta_{\mathrm{H}}=4.04 \mathrm{ppm}\right)$, suggesting that the previously reported assignments for these groups in triclisine $(\mathbf{1 d})^{[27]}$ could be reversed.

Conclusions

The synthesis of 2-methyltriclisine (5), an unnatural ana\log of the azafluoranthene alkaloid triclisine (1d) was achieved, in ten steps and 21% overall yield from 2-bromo-3,4-dimethoxy benzaldehyde (11a), through the intermediacy of known 3,4-dimethoxyfluoren-9-one (8) and without
resorting to the use of protecting groups. The synthesis features a para-Claisen rearrangement and a microwave assisted 6π electrocyclization reaction of a properly substituted 1-propenylfluoren-9-one-oxime for construction of the heterocyclic ring. In addition, it includes a new and efficient three-step synthesis of $\mathbf{8}$, in 78% overall yield from 2-bromo-3,4-dimethoxybenzaldehyde (11a), employing a strategy consisting in Grignard addition to polysubstituted benzaldehyde 11a, followed by oxidation of the so produced benhydrol and a palladium-catalyzed direct arylation of the resulting benzophenone, as key transformation.

Experimental Section

General: The reactions were carried out under dry nitrogen or argon atmosphere, employing oven-dried glassware. Reagents were used as received; anhydrous THF was prepared by distillation from Na-benzophenone ketyl; anhydrous DMF was obtained by heating the PA grade product over BaO for 4 h , followed by distillation under reduced pressure; absolute EtOH was accessed by refluxing the solvent over clean magnesium turnings and distilling from the resulting magnesium ethoxide; anhydrous DMA and 1,2-dichlorobenzene were prepared by distillation of the corresponding commercial products; anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was prepared by a 4 h reflux of the solvent over $\mathrm{P}_{2} \mathrm{O}_{5}$ followed by distillation; anhydrous solvents were stored in dry Young ampoules. All other reagents were used as received.
In the conventional work-up procedure, the reaction mixture was diluted with brine $(5-10 \mathrm{~mL})$ and the products were extracted with EtOAc $(4-5 \times 20 \mathrm{~mL})$; the combined organic extracts were then washed once with brine (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was subjected to flash column chromatography with silica gel 60 H . Elution was carried out with hexane/EtOAc mixtures, under positive pressure and employing gradient of solvent polarity techniques. All new compounds gave single spots on TLC plates run in different hexane/ EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene solvent systems. Chromatographic spots were detected by exposure to 254 nm UV light, followed by spraying with ethanolic ninhydrin (nitrogen-containing compounds) or with ethanolic p-anisaldehyde/sulfuric acid reagent and careful heating of the plates for improving selectivity.
Melting points were determined on an Leitz hot-stage microscope (model 350) and are reported uncorrected. FTIR spectra were acquired with a Shimadzu Prestige 21 spectrophotometer as thin films held between NaCl cells or as solid dispersions in KBr disks. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired in CDCl_{3} in a Bruker Avance spectrometer (300.13 and 75.48 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively). The chemical shifts are reported in parts per million downfield from tetramethylsilane used as internal standard, and coupling constants (J) are expressed in Hertz. DEPT 135 and DEPT 90 experiments aided the interpretation and assignment of the fully decoupled ${ }^{13} \mathrm{C}$ NMR spectra. In special cases, 2D-NMR experiments (COSY, HMBC and HMQC) were also employed. Pairs of signals marked with asterisks $\left(^{*}\right.$) or hashes (\#) indicate that their assignments may be exchanged. GC-MS analyses were performed with a Perkin-Elmer Q-700 spectrometer equipped with an apolar fused silica capillary column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$), coated with 5% phenyl- and 95% dimethyl-polysiloxane (DB-5, coating thickness $0.25 \mu \mathrm{~m}$). High-resolution mass spectroscopic data were obtained from the University of California, Riverside (USA). For-
mation of fluoren-9-one $\mathbf{8}$ was monitored employing a Shimadzu model 14B gas chromatograph fitted with a J\&W Scientific $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ polydimetylsiloxane capillary column and a flame ionization detector. Hydrogen ($1 \mathrm{~mL} / \mathrm{min}$) was employed as carrier gas. Chromatographic parameters were: $T_{\text {det }}=270^{\circ} \mathrm{C} ; T_{\mathrm{inj}}=$ $250^{\circ} \mathrm{C}$. The temperature gradient program was $50-250^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} /$ min. Microwave-assisted reactions were performed in a CEM Discover microwave oven.

3,4-Dimethoxyfluoren-9-one (8) from 2-Iodo-3,4-dimethoxybenzal-

 dehyde (11a): A stirred solution of aldehyde 11a (400 mg , $1.37 \mathrm{mmol})$ in THF (15 mL) was cooled to $-40^{\circ} \mathrm{C}$ and treated dropwise (20 min) with a freshly prepared THF solution of phenylmagnesium bromide ($0.30 \mathrm{~m}, 6 \mathrm{~mL}$). After 1 h , the reaction was treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL), the system was allowed to reach room temperature and the product was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and subjected to chromatography, giving (2-iodo-3,4-dimethoxyphenyl)phenylmethanol (12a) ($594 \mathrm{mg}, 85 \%$), as a white solid; m.p. $123-125^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=3469,2961$ 1950, 1584, 1476, 1393, 1278, 1134, 1026, 916, 814, 729 (and 661) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=2.51$ (br. s, $\left.1 \mathrm{H}, w_{1 / 2}=7.2 \mathrm{~Hz}, \mathrm{OH}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{OMe}), 3.86(\mathrm{~s}, 3 \mathrm{H}$, 4-OMe), 6.10 (s, $1 \mathrm{H}, \mathrm{ArCH}), 6.88$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.15$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.25-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=56.1(4-\mathrm{OMe}), 60.3$ (3-OMe), $78.7(\mathrm{C}-\mathrm{OH}), 98.2(2-\mathrm{C}), 112.5$ ($5-\mathrm{C}$), 124.1 ($6-\mathrm{C}$), 127.1 ($2 \mathrm{C}, 2-\mathrm{C}^{\prime}$ and $6-\mathrm{C}^{\prime}$), 127.6 ($4-\mathrm{C}^{\prime}$), 128.4 ($2 \mathrm{C}, 3-\mathrm{C}^{\prime}$ and $5-\mathrm{C}^{\prime}$), 138.6 (1-C), 142.6 ($1-\mathrm{C}^{\prime}$), 148.5 (3-C), 152.0 (4-C) ppm. GC/MS: $m / z(\%)=370(88)\left[\mathrm{M}^{+}\right], 293(21), 211(30)$, 165 (39), 105 (100). Without further purification, a stirred solution of 12a ($406 \mathrm{mg}, 1.10 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was treated with PDC ($515 \mathrm{mg}, 1.37 \mathrm{mmol}$) at room temperature. The resulting suspension was stirred until complete consumption of the starting material (15 h); then, the slurry was filtered through Celite and concentrated under reduced pressure to give an oily residue, which was chromatographed, affording (2-bromo-3,4-dimethoxyphenyl)phenylmethanone $\mathbf{1 0 a}(375 \mathrm{mg}, 93 \%$), as a yellowish solid; m.p. $117-119^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=2938,2840$, $1668,1577,1476,1386,1274,1155,1024,959,851,717,627 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta=3.87$ (s, $3 \mathrm{H}, 3-\mathrm{OMe}$), 3.93 (s, 3 H, 4-OMe), 6.95 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.44$ (br. dd, $J=7.4,7.9 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 7.59(\mathrm{dt}, J=1.2,7.4 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.80\left(\mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=56.1$ (4-OMe), 60.5 (3-OMe), 92.2 (2-C), 111.8 (5-C), 125.3 ($6-\mathrm{C}$), 128.5 ($2 \mathrm{C}, 3-\mathrm{C}^{\prime}$ and $5-\mathrm{C}^{\prime}$), 130.5 ($2 \mathrm{C}, 2-\mathrm{C}^{\prime}$ and $6-\mathrm{C}^{\prime}$), 133.4 ($4-\mathrm{C}^{\prime}$), 136.3 ($1-\mathrm{C}^{\prime}$), 137.3 (1-C), 149.2 (3-C), 155.0 (4-C), 196.6 ($\mathrm{C}=\mathrm{O}$) ppm. Anhydrous KOAc ($19 \mathrm{mg}, 0.19 \mathrm{mmol}$), DavePhos ($3.7 \mathrm{mg}, 0.0095 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(26 \mathrm{mg}, 0.19 \mathrm{mmol})$ were succesively added to a solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.5 \mathrm{mg}$, $0.0057 \mathrm{mmol})$ in DMA $(1.5 \mathrm{~mL})$ and the resulting suspension was stirred at room temperature during 15 min , when a solution of iodobenzophenone 10a ($35 \mathrm{mg}, 0.095 \mathrm{mmol}$) in DMA $(0.5 \mathrm{~mL})$ was introduced via a cannula. The system was heated at $110^{\circ} \mathrm{C}$ until all the starting material was consumed (23 h). Then, the solvent was removed in vacuo at $35^{\circ} \mathrm{C}$ and the remaining solid was suspended in EtOAc (4 mL), filtered through a short plug of cotton and transferred to a separatory funnel. Water $(4 \mathrm{~mL})$ was added to remove dissolved salts and the aqueous phase was back-extracted with EtOAc $(2 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (2.5 mL), dried with MgSO_{4} and chromatographed, furnishing the benzophenone derivative $\mathbf{1 0 c}(4.3 \mathrm{mg}, 19 \%)$ as a white solid; m.p. $88-90^{\circ} \mathrm{C}$ (hexane/EtOAc; ref. ${ }^{[17 \mathrm{c}]} 86-90^{\circ} \mathrm{C}$). IR (KBr): $\tilde{v}=3000,2940,2840,1660,1580,1480,1320,1250,1180$, 1030, 964, 814, 770, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=3.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$,3.96 (s, $3 \mathrm{H}, \mathrm{OMe}$), 6.89 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.38(\mathrm{dd}, J=$ $1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.44-7.52\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.50(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.57$ (ddt, $J=1.4,6.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime} \mathrm{H}$), $7.76\left(\mathrm{dd}, J=1.4,8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: δ $=56.0(\mathrm{OMe}), 56.1(\mathrm{OMe}), 109.7(5-\mathrm{C}), 112.1(2-\mathrm{C}), 125.5(6-\mathrm{C})$, 128.2 ($2 \mathrm{C}, 3^{\prime}-\mathrm{C}$ and $5^{\prime}-\mathrm{C}$), 129.7 ($2 \mathrm{C}, 2^{\prime}-\mathrm{C}$ and $6^{\prime}-\mathrm{C}$), 130.2 ($1-$ C), 131.9 ($4^{\prime}-\mathrm{C}$), 138.3 ($\left.1^{\prime}-\mathrm{C}\right), 149.0$ (3-C), 153.0 (4-C), 195.6 $(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. Increasing solvent polarity provided fluoren-9-one $\mathbf{8}$ ($11.3 \mathrm{mg}, 34 \%$), as a bright yellow solid; m.p. $143.5-145^{\circ} \mathrm{C}$ (hexane/EtOAc, ref. ${ }^{[14]} 143-144.5^{\circ} \mathrm{C}$). IR (KBr): $\tilde{v}=2924,2831,1702$, 1610, 1599, 1494, 1256, 1104, 1021, 959, 818, 756, $606 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=3.93$ (s, $3 \mathrm{H}, 3$-OMe), 3.96 (s, $3 \mathrm{H}, 4-\mathrm{OMe}$), 6.73 (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.41(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.62(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=56.2(3-\mathrm{OMe}), 60.4$ (4-OMe), 111.2 (2-C), 121.4 (1-C), 123.8 (8-C), 124.0 ($5-\mathrm{C}$), 128.0 ($9 \mathrm{a}-\mathrm{C}), 128.8$ (7-C), 134.5 (6-C), 135.2 ($8 \mathrm{a}-$ C), 136.3 ($4 \mathrm{a}-\mathrm{C}$), 142.5 ($4 \mathrm{~b}-\mathrm{C}$), 144.8 (4-C), 159.1 (3-C), 192.4 $(\mathrm{C}=\mathrm{O}) \mathrm{ppm} . \mathrm{GC} / \mathrm{MS}: m / z(\%)=368(100)\left[\mathrm{M}^{+}\right], 291(98), 226(34)$, 105 (68).
(2-Bromo-3,4-dimethoxyphenyl)phenylmethanol (12b): A stirred solution of 2-bromo-3,4-dimethoxybenzaldehyde (11b, 500 mg , $2.04 \mathrm{mmol})$ in THF (8 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise (20 min) with a freshly prepared THF solution of phenylmagnesium bromide ($0.34 \mathrm{~m}, 7.3 \mathrm{~mL}$). After 1.5 h , the reaction was warmed to room temperature, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added and the product was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with brine $(2 \times 10 \mathrm{~mL})$, dried with MgSO_{4} and subjected to chromatography, furnishing 12b ($617 \mathrm{mg}, 94 \%$), as a white solid; m.p. $102-103^{\circ} \mathrm{C}$ (hexane/ EtOAc). IR (KBr): $\tilde{v}=3500,2936,2836,1593,1485,1280,1142$, 1031, 921, 812, 728, $649 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=2.80$ (br. s, $1 \mathrm{H}, w_{1 / 2}$ $=15 \mathrm{~Hz}, \mathrm{OH}), 3.84(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{OMe}), 3.85(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OMe}), 6.16(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArCH}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1$ $\mathrm{H}, 6-\mathrm{H}), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=56.1(4-$ $\mathrm{OMe}), 60.5(3-\mathrm{OMe}), 74.6(\mathrm{C}-\mathrm{OH}), 111.4$ (5-C), 118.9 (2-C), 123.6 ($6-\mathrm{C}$), 126.9 ($2 \mathrm{C}, 2-\mathrm{C}^{\prime}$ and $6-\mathrm{C}^{\prime}$), 127.6 ($4-\mathrm{C}^{\prime}$), 128.3 ($2 \mathrm{C}, 3-\mathrm{C}^{\prime}$ and $\left.5-\mathrm{C}^{\prime}\right), 135.7$ (1-C), 142.5 ($1-\mathrm{C}^{\prime}$), 146.2 (3-C), 152.9 (4-C) ppm. HRMS calcd. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrO}_{3}: 321.0121\left[\mathrm{M}^{+}-\mathrm{H}\right]$; found 321.0121.
(2-Bromo-3,4-dimethoxyphenyl)phenylmethanone (10b): A solution of 11b ($420 \mathrm{mg}, 1.30 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13.4 \mathrm{~mL})$ was treated with PDC $(1.285 \mathrm{~g})$ at room temperature. The resulting suspension was stirred until full consumption of the starting material (20 h); then, it was filtered through Celite and concentrated to give an oily residue, which was chromatographed to afford benzophenone $\mathbf{1 0 b}$ ($382 \mathrm{mg}, 92 \%$) as a white solid; m.p. $121-122^{\circ} \mathrm{C}$ (hexane/ EtOAc). IR (KBr): $\tilde{v}=3002,2937,2839,1658,1587,1486,1321$, 1299, 1180, 1034, 964, 813, 720, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=3.89(\mathrm{~s}, 3$ $\mathrm{H}, 3-\mathrm{OMe}), 3.93$ (s, $3 \mathrm{H}, 4-\mathrm{OMe}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.21 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}) 7.45$ (br. dd, $J=7.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $3^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 7.58\left(\mathrm{dt}, J=1.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.80(\mathrm{dd}, J$ $=1.2,7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=56.2(4-$ OMe), 60.7 (3-OMe), 110.9 (5-C), 116.2 (2-C), 125.1 ($6-\mathrm{C}), 128.5$ (2 C, 3-C ${ }^{\prime}$ and $5-\mathrm{C}^{\prime}$), 130.2 ($2 \mathrm{C}, 2-\mathrm{C}^{\prime}$ and $6-\mathrm{C}^{\prime}$), 133.4 ($4-\mathrm{C}^{\prime}$), 133.7 ($1-\mathrm{C}$), 136.7 ($1-\mathrm{C}^{\prime}$), 146.8 (3-C), 155.0 ($4-\mathrm{C}$), 195.3 ($\mathrm{C}=\mathrm{O}$) ppm. HRMS calcd. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrO}_{3}: 321.0121\left[\mathrm{MH}^{+}\right]$; found 321.0131.

3,4-Dimethoxyfluoren-9-one (8) from 2-Bromobenzophenone (10b): A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(78 \mathrm{mg}, 0.0675 \mathrm{mmol})$, in DMA (5 mL) was successivelly treated with anhydrous KOAc (219 mg , 2.23 mmol), DavePhos ($44 \mathrm{mg}, 0.111 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(309 \mathrm{mg}$, 2.24 mmol) and the resulting suspension was stirred at room temperature during 15 min , when a solution of benzophenone $\mathbf{1 0 b}$
($350 \mathrm{mg}, 1.09 \mathrm{mmol}$) in DMA (0.5 mL) was introduced via a cannula. The system was heated at $110-120^{\circ} \mathrm{C}$ during 22 h , until all the starting material was consumed. Then, the solvent was removed in vacuo at $35^{\circ} \mathrm{C}$ and the remaining solid was suspended in EtOAc $(40 \mathrm{~mL})$, filtered through a short plug of cotton and transferred to a separatory funnel. Water (40 mL) was added to remove dissolved salts and the aqueous phase was back-extracted with EtOAc $(2 \times 25 \mathrm{~mL})$. The combined organic phases were washed with brine (25 mL), dried with MgSO_{4} and chromatographed to furnish the fluoren-9-one derivative $8(262 \mathrm{mg}, 90 \%)$, the melting point and spectroscopic data of which were in agreement with those obtained for $\mathbf{8}$ when synthesized from iodooaldehyde 12a through the intermediacy of 2-iodobenzophenone derivative 10a.

4-Allyloxy-3-methoxyfluoren-9-one (7), and 3-Allyloxy-4-methoxy-fluoren-9-one (15): A stirred solution of EtSH ($0.27 \mathrm{~mL}, 3.6 \mathrm{mmol}$) in DMF (5.0 mL) was treated with a 50% dispersion of NaH in mineral oil ($156.4 \mathrm{mg}, 3.26 \mathrm{mmol}$) and heated at $50^{\circ} \mathrm{C}$ during 20 min , when a solution of fluoren-9-one $\mathbf{8}(263 \mathrm{mg}, 1.09 \mathrm{mmol})$ in DMF (1.5 mL) was added via cannula to the thus formed sodium ethanothiolate. The resulting reddish solution was stirred at $50^{\circ} \mathrm{C}$ during 17 h , until complete consumption of starting ketone was verified by TLC. Then, the reaction was cautiously treated with $1.0 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$, rendering a yellow solution, which was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(2 \times 10 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and chromatographed, yielding 14a and 14b, as an approximately 60:40 (by ${ }^{1} \mathrm{H}$ NMR:) inseparable mixture of regioisomers. Spectral data of $\mathbf{1 4 a}{ }^{1} \mathrm{H}$ NMR: $\delta=3.92(\mathrm{~s}, 3 \mathrm{H}$, 3-OMe), 6.15 (br. s, $\left.1 \mathrm{H}, w_{1 / 2}=6 \mathrm{~Hz}, \mathrm{OH}\right), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ $\mathrm{H}, 3-\mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $7.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=56.4$ (3OMe), 109.3 (2-C), 117.7 (1-C), 123.8 (5-C), 124.2 (8-C), 127.9 ($9 \mathrm{a}-$ C), 128.1 ($7-\mathrm{C}$), 129.0 ($4 \mathrm{a}-\mathrm{C}$), 134.6 ($6-\mathrm{C}$), 134.7 ($8 \mathrm{a}-\mathrm{C}$), 136.7 ($4 \mathrm{~b}-$ C), 141.4 (4-C), 152.8 (3-C), 193.3 (C=O) ppm. Spectral data of 14b ${ }^{1} \mathrm{H}$ NMR: $\delta=3.96$ (s, $3 \mathrm{H}, 4-\mathrm{OMe}$), 6.83 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $3-\mathrm{H}), 6.96$ (br. s, $\left.1 \mathrm{H}, w_{1 / 2}=12 \mathrm{~Hz}, \mathrm{OH}\right), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, $7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR: $\delta=61.1$ (4-OMe), 115.7 (2-C), 122.4 (3-C), 123.5 (5C), 124.0 ($8-\mathrm{C}$), 128.1 ($9 \mathrm{a}-\mathrm{C}), 128.3$ ($7-\mathrm{C}$), 134.6 ($4 \mathrm{a}-\mathrm{C}), 134.5$ ($6-$ C), 135.1 ($8 \mathrm{a}-\mathrm{C}$), 141.7 ($4 \mathrm{~b}-\mathrm{C}$), 142.8 (4-C), 156.1 (3-C), 192.4 (C=O) ppm. The mixture of phenols ($194.0 \mathrm{mg}, 0.857 \mathrm{mmol}$) was dissolved in absolute EtOH (1.5 mL); allyl bromide $(0.096 \mathrm{~mL}$, $1.12 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(165.5 \mathrm{mg}, 1.2 \mathrm{mmol})$ were added under gently stirring, and the resulting reddish suspension was heated under reflux for 1.5 h . Then, the suspension was filtered, the solids were washed with EtOAc (1 mL) and the filtrate was concentrated under reduced pressure, leaving a solid residue, which was chromatographed to afford allyl ether $\mathbf{1 5}(75 \mathrm{mg}, 33 \%$ overall yield), as an oil. IR (KBr): $\tilde{v}=3020,2950,2848,1699,1557,1498,1360$, 1254, 1107, 1013, 926, 825, 758, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=3.99(\mathrm{~s}, 3$ $\mathrm{H}, 4-\mathrm{OMe}), 4.66\left(\mathrm{dd}, J=1.4,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 5.35(\mathrm{dd}, J$ $\left.=1.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C} H_{2 c i s}\right), 5.47(\mathrm{dd}, J=1.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}_{2 \text { trans }}$), 6.08 (dddd, $J=3.8,3.8,10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.26(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.47(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 7.63(\mathrm{dd}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.85(\mathrm{dd}, J=1.0$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=60.4$ (4-OMe), 69.7 (Ar$\left.\mathrm{OCH}_{2}\right), 112.6(2-\mathrm{C}), 118.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 121.2(1-\mathrm{C}), 123.8(8-\mathrm{C})$, $124.0(5-\mathrm{C}), 128.2(9 \mathrm{a}-\mathrm{C}), 128.7(6-\mathrm{C}), 132.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 134.6$ (7C), 135.1 ($8 \mathrm{a}-\mathrm{C}$), 136.5 ($4 \mathrm{a}-\mathrm{C}$), 142.6 ($4 \mathrm{~b}-\mathrm{C}$), 145.0 ($4-\mathrm{C}$), 158.0 (3C), $192.5(\mathrm{C}=\mathrm{O})$ ppm. HRMS calcd. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3}: 267.1016\left[\mathrm{MH}^{+}\right]$;
found 267.1017. Increasing solvent polarity allowed the isolation of desired regioisomer $7(119 \mathrm{mg}, 52 \%$ overall yield), as a yellowish solid; m.p. 78-79 ${ }^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=3022,2951$, 2847, 1699, 1560, 1497, 1365, 1253, 1105, 1009, 926, 822, 757, 692 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR: $\delta=3.93(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{OMe}), 4.65$ (br. d, $J=5.9 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{ArOCH})_{2}\right), 5.28\left(\mathrm{dd}, J=1.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2 c i s}\right), 5.42$ (dd, $J=1.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2 \text { trans }}$), 6.14 (dddd, $J=5.9,5.9$, $\left.10.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.27$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.45(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.88(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=56.2$ (3-OMe), 73.7 (Ar$\left.\mathrm{OCH}_{2}\right), 111.2(2-\mathrm{C}), 118.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 121.4(1-\mathrm{C}), 123.8(8-\mathrm{C})$, 124.2 (5-C), 128.1 (9a-C), 128.7 (6-C), $133.8\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 134.5(7-$ C), 135.2 ($8 \mathrm{a}-\mathrm{C}$), 136.7 ($4 \mathrm{a}-\mathrm{C}$), 142.6 ($4 \mathrm{~b}-\mathrm{C}$), 143.3 ($4-\mathrm{C}$), 159.1 (3C), $192.5(\mathrm{C}=\mathrm{O})$ ppm. HRMS calcd. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3}: 267.1016\left[\mathrm{MH}^{+}\right]$; found 267.1018 .

1-Allyl-4-hydroxy-3-methoxyfluoren-9-one (16): A solution of allyl ether $7(93.0 \mathrm{mg}, 0.349 \mathrm{mmol})$ in $1,2-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}(3.0 \mathrm{~mL})$ was heated at reflux, until complete consumption of the starting material was observed by TLC (12 h). Then, the solution was chromatographed yielding 16 ($74 \mathrm{mg}, 80 \%$), as a bright yellow solid; m.p. $185-$ $185.5^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=3411,3069,2937,2850$, $1625,1599,1466,1385,1249,1129,1004,906,851,740,666 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta=3.80\left(\mathrm{dd}, J=1.3,5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.94(\mathrm{~s}, 3$ $\mathrm{H}, 3-\mathrm{OMe}), 5.06$ (ddd, $J=1.4,3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2 c i s}$), 5.13 (ddd, $\left.J=1.4,3.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2 \text { trans }}\right), 5.92(\mathrm{~s}, 1 \mathrm{H}$, OH), 5.98 (dddd, $J=5.3,5.3,10.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 6.46 $(\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.23(\mathrm{dt}, J=0.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.45(\mathrm{dt}, J=1.1$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 7.60 (br. d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.83 (br. d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=34.9\left(\mathrm{ArCH}_{2}\right), 56.4(3-$ OMe), $110.9(2-\mathrm{C}), 116.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 123.4(8-\mathrm{C}), 124.0(5-\mathrm{C})$, 124.4 (1-C), 128.0 ($7-\mathrm{C}$), 128.5 ($9 \mathrm{a}-\mathrm{C}$), 134.2 ($6-\mathrm{C}), 134.9$ ($8 \mathrm{a}-\mathrm{C}$), \# 135.1 (4a-C), ${ }^{\#} 136.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 140.0(4 \mathrm{~b}-\mathrm{C}),{ }^{\#} 142.2(4-\mathrm{C}),{ }^{\#} 152.3$ (3-C), $193.6(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. HRMS calcd. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3}: 267.1016$ [MH^{+}]; found 267.1017.
1-Allyl-3,4-dimethoxyfluoren-9-one (17): MeI $\quad(0.090 \mathrm{~mL}$, $1.45 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(34.8 \mathrm{mg}, 0.362 \mathrm{mmol})$ were successively added to a stirred solution of allylphenol $\mathbf{1 6 a}(64.3 \mathrm{mg}$, $0.242 \mathrm{mmol})$ in absolute EtOH $(4.0 \mathrm{~mL})$ and the resulting suspension was heated under reflux until complete consumption of the starting material was observed (2 h). The solvent was removed under reduced pressure, the remaining solid was diluted with brine $(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(5 \times 3 \mathrm{~mL})$; filtration through a short pad of silica gave $17(62 \mathrm{mg}, 92 \%)$, as a yellow solid; m.p. $112.5-113.5^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=3066,2972,2829$, 1697, 1505, 1425, 1371, 1257, 1172, 1023, 923, 836, 750, $665 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta=3.83\left(\mathrm{dt}, J=1.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.93(\mathrm{~s}, 3 \mathrm{H}$, 3-OMe), 3.94 (s, $3 \mathrm{H}, 4-\mathrm{OMe}$), 5.09 (ddd, $J=1.4,3.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2 \text { trans }}\right), 5.15\left(\mathrm{ddd}, J=1.4,3.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2 c i s}\right)$, 5.99 (dddd, $J=6.9,6.9,7.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $6.53(\mathrm{~s}, 1$ $\mathrm{H}, 2-\mathrm{H}), 7.26(\mathrm{dt}, J=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.46(\mathrm{dt}, J=1.1$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 7.60 (br. d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.85 (br. d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=35.1\left(\mathrm{ArCH}_{2}\right), 56.1(3-$ $\mathrm{OMe}), 60.4(4-\mathrm{OMe}), 112.7(2-\mathrm{C}), 116.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 123.5(8-\mathrm{C})$, 123.8 (5-C), 124.1 (1-C), 128.7 (7-C), 134.3 ($9 \mathrm{a}-\mathrm{C}), 135.5$ ($8 \mathrm{a}-\mathrm{C}$), 136.2 (6-C), 136.7 ($4 \mathrm{a}-\mathrm{C}$), ${ }^{\#} 138.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$), $141.9(4 \mathrm{~b}-\mathrm{C})$, \# 143.4 (4-C), ${ }^{\#} 158.6$ (3-C), 193.1 (C=O) ppm. HRMS calcd. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$: $281.1172\left[\mathrm{MH}^{+}\right]$; found 281.1173 .
(E)-1-Propenyl-3,4-dimethoxyfluoren-9-one (18): A stirred solution of $\mathbf{1 7}(58.4 \mathrm{mg}, 0.208 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was treated with $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(4.7 \mathrm{mg}, 0.018 \mathrm{mmol})$ and the reaction was refluxed during 60 h . The resulting black slurry was filtered through a short
pad of Celite, and the filtrate was concentrated and chromatographed, furnishing the isomerized olefin $18(53 \mathrm{mg}, 90 \%)$, as a yellow solid; m.p. $174.5-175^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=$ 2972, 2850, 1697, 1584, 1426, 1371, 1257, 1172, 1023, 924, 837, $750,687 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=1.96(\mathrm{dd}, J=1.7$ and $6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Me}\right), 3.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.37(\mathrm{dq}, J=$ $6.8,15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H-\mathrm{Me}), 6.83$ (s, $1 \mathrm{H}, 2-\mathrm{H}$), 7.26 (dt, $J=1.4$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.45(\mathrm{dt}, J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.61(\mathrm{dd}, J$ $=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.63(\mathrm{dd}, J=1.7,15.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}=\mathrm{CH}), 7.85(\mathrm{dd}, J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=18.8$ (CH-Me), 56.0 (3-OMe), 60.4 (4-OMe), 107.0 (2-C), 122.5 ($1-\mathrm{C}$), $123.4(8-\mathrm{C}), 123.7(5-\mathrm{C}), 126.1(\mathrm{ArCH}=\mathrm{CH}), 128.6$ ($7-\mathrm{C}$), 129.9 ($\mathrm{ArCH}=\mathrm{CH}$), 134.1 (6-C), 135.6 ($9 \mathrm{a}-\mathrm{C}),{ }^{*} 135.8$ ($\left.8 \mathrm{a}-\mathrm{C}\right)$,* 136.0 (4a-C), ${ }^{\#} 141.8$ (4b-C), \# 143.9 (4-C), \# 158.4 (3-C), 193.2 $(\mathrm{C}=\mathrm{O})$ ppm. HRMS calcd. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}$: $281.1172\left[\mathrm{MH}^{+}\right]$; found 281.1171.
(E)-1-Propenyl-3,4-dimethoxyfluoren-9-one (Z)-O-Methyl Oxime (6a): O-Methyl hydroxylamine hydrochloride $(177.4 \mathrm{mg}$, 2.12 mmol) and anhydrous $\mathrm{NaAcO}(174.2 \mathrm{mg}, 2.12 \mathrm{mmol})$ were successively added to a stirred solution of $\mathbf{1 8}(25.3 \mathrm{mg}$, $0.0903 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(3.0 \mathrm{~mL})$, and the reaction was refluxed overnight, when an additional amount of methoxyamine hydrochloride (50 mg) was added in order to drive the process to completion. Then, the greenish suspension was evaporated to dryness and the residue was subjected to column chromatography, furnishing N-methoxy oxime $\mathbf{6 a}(22 \mathrm{mg}, 89 \%$), as a pale yellow solid; m.p. $87-88^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=3048,2931,2828$, 1603, 1567, 1428, 1372, 1293, 1198, 1057, 843, $740,697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=1.97$ (dd, $J=1.8,6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{Me}$), $3.94(\mathrm{~s}, 3 \mathrm{H}$, $3-\mathrm{OMe}$), 3.96 (s, $3 \mathrm{H}, 4-\mathrm{OMe}$), 4.22 (s, $3 \mathrm{H}, N$-OMe), 6.28 (dq, J $=6.6,15.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{Me}), 6.94(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.29(\mathrm{dt}, J=1.0$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.41(\mathrm{dt}, J=1.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.56$ (br. dd, $J=1.8,15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}$), 8.05 (br. d, $J=7.6 \mathrm{~Hz}, 1$ $\mathrm{H}, 5-\mathrm{H}$), 8.34 (br. d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=$ 18.8 (CH-Me), 56.0 (3-OMe), 60.3 (4-OMe), 63.4 (N-OMe), 108.1 $(2-\mathrm{C}), 123.4(5-\mathrm{C}), 124.1(1-\mathrm{C}), 127.2(\mathrm{ArCH}=\mathrm{CH}), 127.8(6-\mathrm{C})$, 129.1 ($8-\mathrm{C}$), $129.2(\mathrm{ArCH}=\mathrm{CH}), 130.8(7-\mathrm{C}), 131.5(9 \mathrm{a}-\mathrm{C}), * 131.8$ ($2 \mathrm{C}, 4 \mathrm{a}-\mathrm{C}$ and $8 \mathrm{a}-\mathrm{C}$), \# 132.9 (4b-C), ${ }^{\text {. }} 139.4$ (4-C), ${ }^{\#} 143.9$ ($C=$ NOMe), 154.0 (3-C) ppm. HRMS calcd. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}: 310.1438$ $\left[\mathrm{M}^{+}\right]$; found 310.1442 .

5,6-Dimethoxy-2-methylindeno [1,2,3-ij]isoquinoline (2-methyltriclisine, 5): A solution of oxime $\mathbf{6 a}(21 \mathrm{mg}, 0.067 \mathrm{mmol})$ in $1,2-\mathrm{Cl}_{2^{-}}$ $\mathrm{C}_{6} \mathrm{H}_{4}(2.5 \mathrm{~mL})$ was transferred to a microwave reactor tube; the tube was purged with argon, sealed and heated at $180^{\circ} \mathrm{C}$ during 60 min , when absence of starting material was ascertained by TLC. The solution was submitted to column chromatography, giving 5 ($15 \mathrm{mg}, 81 \%$) as a white solid; m.p. $126-128^{\circ} \mathrm{C}$ (hexane/EtOAc). IR (KBr): $\tilde{v}=2943,2853,1592,1488,1354,1251,1038,999,843$, $744,622 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=2.79(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{Me}), 3.97(\mathrm{~s}, 3 \mathrm{H}, 5-$ OMe), 4.04 (s, $3 \mathrm{H}, 6-\mathrm{OMe}$), 6.86 ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{H}$), 7.23 (s, $1 \mathrm{H}, 3-\mathrm{H}$), 7.38 (ddd, $J=1.5,7.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.43$ (ddd, $J=1.5,7.4$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.94 (br. dd, $J=1.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 8.15 (dd, $J=1.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta=24.9(\mathrm{Me}-2)$, 56.3 (5-OMe), 61.4 ($6-\mathrm{OMe}$), 104.2 ($4-\mathrm{C}$), 115.4 (3-C), 121.6 (3aC), 121.9 ($10-\mathrm{C}$), 124.7 ($7-\mathrm{C}$), 126.3 ($10 \mathrm{c}-\mathrm{C}$), 128.2 ($8-\mathrm{C}$), 129.6 (9 C), 131.2 ($6 \mathrm{a}-\mathrm{C}$), 138.4 ($10 \mathrm{a}-\mathrm{C}), 139.2$ ($6 \mathrm{~b}-\mathrm{C}$), 147.0 (6-C), 154.5 (2-C), 158.5 (10b-C), 159.1 (5-C) ppm. HRMS calcd. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2}$: $278.1176\left[\mathrm{MH}^{+}\right]$; found 278.1179.

Supporting Information (see also the footnote on the first page of this article): Copies of the ${ }^{13} \mathrm{C}$ NMR spectra of the target compounds and synthetic intermediates are provided.

Acknowledgments

Support for an international cooperation provided by Ministerio de Ciencia, Tecnología e Innovación Productiva - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (MINCyT-CAPES) (Project BR-06/019), is greatly acknowledged. E. L. L. and T. S. K. thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP number 3294), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT number 06-38165). A. B. J. B. thanks CONICET for her fellowship.
[1] a) W. Rotard, W. Mailahn, Anal. Chem. 1987, 59, 65-69; b) S. G. Wakeham, Environ. Sci. Technol. 1979, 13, 1118-1123; c) H.-Y. Chen, M. R. Preston, Environ. Sci. Technol. 1998, 32, 577-583.
[2] a) R.-J. Hua, H.-X. Liu, R.-S. Zhang, C.-X. Xue, X.-J. Yao, M.-C. Liu, Z.-D. Hu, B.-T. Fan, Talanta 2005, 68, 31-39; b) M. G. Barron, R. Heintz, S. D. Rice, Mar. Environ. Res. 2004, 58, 95-100; c) K. Fent, Toxicol. in vitro 2001, 15, 477-488.
[3] a) For a review, see: K. T. Buck, Azafluoranthene and Tropoloisoquinoline Alkaloids, in: The Alkaloids: Chemistry and Pharmacology (Ed.: A. Brossi), Academic Press, Inc., New York, 1984, vol. 23, pp. 301-325; b) R. Huls, J. Gaspers, R. Warin, Bull. Soc. R. Sci. Liege 1976, 45, 40-45; c) M. D. Menachery, H. M. Mandell, S. A. DeSaw, N. A. DeAntonio, A. J. Freyer, L. B. Killmer, J. Nat. Prod. 1997, 60, 1328-1330; d) H. Morita, K. Matsumoto, K. Takeya, H. Itokawa, Chem. Pharm. Bull. 1993, 41, 1307-1308.
[4] a) F. Bracher, Pharmazie 1993, 48, 521-523; b) J. C. Lee, J. K. Cha, J. Am. Chem. Soc. 2001, 123, 3243-3246 and references cited therein; c) E. V. L. da-Cunha, M. L. Cornélio, J. M. Bar-bosa-Filho, R. Braz-Filho, A. I. Gray, J. Nat. Prod. 1998, 61, 1140-1142.
[5] a) H. Morita, K. Matsumoto, K. Takeya, H. Itokawa, Y. Iitaka, Chem. Lett. 1993, 22, 339-342; b) M. G. Banwell, N. K. Ireland, J. Chem. Soc., Chem. Commun. 1994, 591-592; c) M. G. Banwell, Pure Appl. Chem. 1996, 68, 539-542.
[6] a) W. H. Lewis, R. J. Stonard, B. Porras-Reyes, T. A. Mustoe, T. A. U. S. Patent $\mathrm{N}^{\circ} 5,156,847$, 1992; Chem. Abstr. 1992, 117, 245630t; b) T. J. Schwan, US patent number 3,971,788, 1976; Chem. Abstr. 1976, 85, 192589y; c) A. Cappelli, M. Anzini, S. Vomero, L. Canullo, L. Mennuni, F. Makovec, E. Doucet, M. Hamon, M. C. Menziani, P. G. De Benedetti, G. Bruni, M. R. Romeo, G. Giorgi, A. Donati, J. Med. Chem. 1999, 42, 15561575.
[7] G. Scherowsky, E. Frackowiak, D. Adam, Acta Crystallogr., Sect. C 1997, 53, 5-7.
[8] a) M. G. Banwell, E. Hamel, N. K. Ireland, M. F. Mackay, A. K. Serelis, J. Chem. Soc. Perkin Trans. 1 1993, 1905-1911; b) M. D. Menachery, C. D. Muthler, K. T. Buck, J. Nat. Prod. 1987, 50, 726-729.
[9] a) H. A. Patel, D. B. Maclean, Can. J. Chem. 1983, 61, 7-13; b) D. L. Boger, K. Takahashi, J. Am. Chem. Soc. 1995, 117, 12452-12459; c) B. Zhao, V. Snieckus, Tetrahedron Lett. 1991, 32, 5277-5278; d) M. Ramana, R. H. Sharma, J. A. Parihar, Tetrahedron Lett. 2005, 46, 4385-4386; e) P. Molina, S. GarcíaZafra, P. M. Fresneda, Synlett 1995, 43-45.
[10] a) Y. Landais, J.-P. Robin, Tetrahedron 1992, 48, 7185-7196; b) J. M. Fu, B. P. Zhao, M. J. Sharp, V. Snieckus, Can. J. Chem. 1994, 72, 227-236.
[11] a) A. B. J. Bracca, T. S. Kaufman, Eur. J. Org. Chem. 2007, 5284-5293; b) E. L. Larghi, T. S. Kaufman, Tetrahedron 2008, 64, 9921-9927; c) E. L. Larghi, B. V. Obrist, T. S. Kaufman, Tetrahedron 2008, 64, 5236-5245; d) T. S. Kaufman, Heterocycles 2001, 55, 323-330; e) D. A. Bianchi, M. A. Cipulli, T. S. Kaufman, Eur. J. Org. Chem. 2003, 4731-4736.
[12] D. A. Bianchi, A. B. J. Bracca, G. Schmeda Hirschmann, C. Theoduloz, T. S. Kaufman, Bioorg. Med. Chem. Lett. 2005, 15, 2711-2715.
[13] For some recent examples, see: a) Q. Ding, Z. Chen, X. Yu, Y. Peng, J. Wu, Tetrahedron Lett. 2009, 50, 340-342; b) J. A. Seijas, M. P. Vázquez-Tato, M. M. Martínez, M. G. Pizzolatti, Tetrahedron Lett. 2005, 46, 5827-5830; c) Q. Ding, Z. Wang, J. Wu, Tetrahedron Lett. 2009, 50, 198-200; d) Z. Huo, H. Tomeba, Y. Yamamoto, Tetrahedron Lett. 2008, 49, 5531-5533; e) H. Nakamura, H. Saito, M. Nanjo, Tetrahedron Lett. 2008, 49, 2697-2700; f) J. Jacobs, J. Deblander, B. Kesteleyn, K. A. Tehrani, N. De Kimpe, Tetrahedron 2008, 64, 5345-5354.
[14] a) D. L. Ladd, J. Weinstock, M. Wise, G. W. Gessner, J. L. Sawyer, K. E. Flaim, J. Med. Chem. 1986, 29, 1904-1912; b) B. Grant, N. J. Clecak, M. Oxsen, A. Jaffe, G. S. Keller, J. Org. Chem. 1980, 45, 702-705.
[15] a) A. Arena, N. Arena, R. Ciurleo, A. de Gregorio, R. Maccari, R. Ottana, B. Pavone, A. Tramice, A. Trincone, M. G. Vigorita, Eur. J. Med. Chem. 2008, 43, 2656-2664; b) M. T. Tierney, M. W. Grinstaff, J. Org. Chem. 2000, 65, 5355-5359; c) C. Fan, W. Wang, Y. Wang, G. Qin, W. Zhao, Phytochemistry 2001, 57, 1255-1258; d) Y. Han, A. Bisello, C. Nakamoto, M. Rosenblatt, M. Chorev, J. Pept. Res. 2000, 55, 230-239; e) M. L. Greenlee, J. B. Laub, G. P. Rouen, F. DiNinno, M. L. Hammond, J. L. Huber, J. G. Sundelof, G. G. Hammond, Bioorg. Med. Chem. Lett. 1999, 9, 3225-3230; f) P. J. Perry, M. A. Read, R. T. Davies, S. M. Gowan, A. P. Reszka, A. A. Wood, L. R. Kelland, S. Neidle, J. Med. Chem. 1999, 42, 2679-2684; g) H. Koyama, T. Kamikawa, Tetrahedron Lett. 1997, 38, 39733976.
[16] a) A.-S. Castanet, D. Tilly, J.-B. Véron, S. S. Samanta, A. De, T. Ganguly, J. Mortier, Tetrahedron 2008, 64, 3331-3336; b) S. Reim, M. Lau, P. Langer, Tetrahedron Lett. 2006, 47, 69036905; c) D. Tilly, S. S. Samanta, F. Faigl, J. Mortier, Tetrahedron Lett. 2002, 43, 8347-8350; d) Z. Yu, D. Velasco, Tetrahedron Lett. 1999, 40, 3229-3232; e) X. Zhang, R. C. Larock, Org. Lett. 2005, 7, 3973-3976; f) G. Qabaja, G. B. Jones, J. Org. Chem. 2000, 65, 7187-7194; g) A. Martínez, J. C. Barcia, A. M. Estévez, F. Fernández, L. González, J. C. Estévez, R. J. Estévez, Tetrahedron Lett. 2007, 48, 2147-2149.
[17] a) K. M. Markovich, V. Tantishaiyakul, A. Hamada, D. D. Miller, K. J. Romstedt, G. Shams, Y. Shin, P. F. Fraundorfer, K. Doyle, D. R. Feller, J. Med. Chem. 1992, 35, 466-479; b) B. M. Trost, W. Tang, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 14785-14803; c) R. P. Singh, R. M. Kamble, K. L. Chandra, P. Saravanan, V. K. Singh, Tetrahedron 2001, 57, 241-247.
[18] For a review, see: D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238; see also: a) A. L. Bowie Jr., C. C. Hughes, D. Trauner, Org. Lett. 2005, 7, 5207-5209; b) C. C. Hughes, D. Trauner, Angew. Chem. Int. Ed. 2002, 41, 1569 1572.
[19] H. J. Li, L. Wang, Eur. J. Org. Chem. 2006, 5099-5102.
[20] a) L.-C. Campeau, M. Parisien, A. Jean, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 581-590; b) S. Pivsa-Art, T. Satoh, Y. Kawamura, M. Miura, M. Nomura, Bull. Chem. Soc. Jpn. 1998, 71, 467-473; c) M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496-16497; d) D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066-1067.
[21] a) T. S. Kaufman, J. Chem. Soc. Perkin Trans. 1 1993, 403-404; b) J. Cvengros, S. Neufeind, A. Becker, H.-G. Schmalz, Synlett 2008, 1993-1998; c) J. Magano, M. H. Chen, J. D. Clark, T. Nussbaumer, J. Org. Chem. 2006, 71, 7103-7105.
[22] a) J. R. Hwu, F. F. Wong, J.-J. Huang, S.-C. Tsay, J. Org. Chem. 1997, 62, 4097-4104; b) J. A. Dodge, M. G. Stocksdale, K. J. Fahey, C. D. Jones, J. Org. Chem. 1995, 60, 739-741.
[23] a) C. C. Silveira, C. R. Bernardi, A. L. Braga, T. S. Kaufman, Tetrahedron Lett. 2003, 44, 6137-6140; b) D. A. Bianchi, L. Brambilla, M. A. Gattuso, T. S. Kaufman, J. Plant Growth Re-
gul. 2006, 25, 332-338; c) A. Silayo, B. T. Ngadjui, B. M. Abegaz, Phytochemistry 1999, 52, 947-955.
[24] a) T. Kumemura, T. Choshi, J. Yukawa, A. Hirose, J. Nobuhiro, S. Hibino, Heterocycles 2005, 66, 87-90; b) T. Choshi, T. Kumemura, J. Nobuhiro, S. Hibino, Tetrahedron Lett. 2008, 49, 3725-3728.
[25] H. Tsutsui, K. Narasaka, Chem. Lett. 2001, 30, 526-527.
[26] a) C. B. Koning, I. R. Green, J. P. Michael, J. R. Oliveira, Tetrahedron 2001, 57, 9623-9634; b) C. B. Koning, R. G. F. Giles, I. R. Green, N. M. Jahed, Tetrahedron 2003, 59, 3175-3182.
[27] H. Guinaudeau, M. Leboeuf, A. Cavé, J. Nat. Prod. 1983, 46, 761-835.

Received: June 17, 2009
Published Online: August 10, 2009

[^0]: [a] Department of Chemistry, Universidade Federal de Santa Maria, CEP 97105.900, Santa Maria, Brazil
 [b] Institute of Chemistry of Rosario (IQUIR, CONICET-UNR) and School of Biochemical and Pharmaceutical Sciences, National University of Rosario,
 Suipacha 531, S2002LRK Rosario, Argentina
 Fax: +54-341-4370477
 E-mail: kaufman@iquir-conicet.gov.ar
 Dupporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.200900673.

