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A useful procedure for the qualitative and quantitative determination of vegetable oils (canola, hazelnut,
pomace and high linoleic/oleic sunflower) as adulterants in commercial samples of extra virgin olive oil,
has been developed. Partial least squares (PLS) was employed for the analysis of Fourier transform infra-
red spectroscopy (FTIR) spectral data of the blend oil samples. Calibration models were constructed for
extra virgin olive oil purity, with wavelength selection in the infrared region, according to their predictive
ability, with first derivative and mean centering used as data pretreatment. PLS models were internally
validated by the leave-one-out procedure. The method developed was very suitable for the determination
of modeled adulterants but it may also reveal an adulteration even if it does not derive from the adulter-
ants employed in this study.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Olive oil is an economically important product in the Mediterra-
nean countries. It has a fine aroma and a pleasant taste, and is
internationally appreciated for its nutritional value and health ben-
efits (Bendini et al., 2007; Harwood & Yaqoob, 2002). Costs of vir-
gin olive oil are high when compared to other commonly used
vegetable oils, making it prone to adulteration with less expensive
oils in order to increase profits. Most common adulterants found in
virgin olive oil are seed oils, such as sunflower, soy, corn and rape-
seed oils as well as nut oils, including hazelnut and peanut oils
(Firestone, 2001).

Several commercial categories of olive oil are legally defined by
the European Community Council of Regulation (EC, 2001), which
are marketed with different prices. Thus, there is also the possibil-
ity of mixing less expensive commercial categories such as refined
olive oil and pomace oil with the highest quality product, extra vir-
gin olive oil (EVOO), for economic reasons. Detection of these two
types of adulteration is often complicated with no single test avail-
able that can accomplish the task, especially when oils with chem-
ical compositions similar to EVOO are employed (García-González
& Aparicio, 2006).
ll rights reserved.

: +39 0547382348.
etani).
Detection and determination of the adulteration of EVOO are
not simple tasks; efforts to detect and determine adulteration tra-
ditionally demand monitoring of several organic compounds to
establish a comparison with typical unadulterated oils in order to
identify change of composition that could be related to adultera-
tion. In this respect, the detection of characteristic chemical com-
ponents has been proposed as a suitable indication of the
presence of other oils in EVOO (García-González & Aparicio,
2006; Ruiz, Caja, Herraiz, & Blanch, 1998), but the use of such com-
pounds to discover adulteration, when refined oils are involved, is
quite difficult. In addition, chemical methods traditionally em-
ployed for the control of authenticity of virgin olive oil as gas chro-
matography and high performance liquid chromatography are
expensive, time-consuming, require skilled operators and have
high environmental impact (Aparicio & Aparicio-Ruíz, 2000;
Kamm, Dionisi, Hischenhuber, & Engel, 2001).

New and complementary analytical techniques devoid of such
troubles, could act as supporting tools for currently used methods,
being very helpful to improve the detection of EVOO adulteration.
Among them, calorimetric techniques seem to be very promising
and the application of differential scanning calorimetry to make
evident the adulteration of EVOO was recently reported by
Chiavaro and co-workers (Chiavaro, Vittadini, Rodriguez-Estrada,
Cerretani, & Bendini, 2008; Chiavaro et al., 2009). On the other
hand, nuclear magnetic resonance coupled with multivariate
statistical analysis (Fragaki, Spyros, Siragakis, Salivaras, & Dais,
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2005) was successfully applied to detect EVOO adulteration with
lampante olive oil and refined olive oil.

Spectrofluorimetric methods are also emerging as an important
alternative; in fact, excitation–emission fluorescence spectroscopy
(Guillén & Cabo, 1999) was reported for detecting adulteration of
olive oil. FTIR has been also successfully used to detect olive oil
adulteration (Lerma-García, Ramis-Ramos, Herrero-Martínez, &
Simó-Alfonso, 2009; Ozen & Mauer, 2002) and freshness (Sinelli,
Cosio, Gigliotti, & Casiraghi, 2007). The latter technique is often
coupled with chemometrics methods such as principal component
analysis (PCA), linear discriminant analysis (LDA), support vector
machine (SVM) and K-nearest neighbor (KNN) (Di, Shuijuan, Xiaoj-
ing, Haiqing, & Yong, 2008; Pravdova, Boucon, de Jong, Walczak, &
Massart, 2002; Sikorska, Górecki, Khmelinskii, Sikorski, & De Keuk-
eleire, 2006), that can be used to assign the measured spectrum to
a category in a training set. In addition, quantitative chemometrics
strategies are suitable for analysis of complex mixtures as they en-
able rapid and simultaneous determination of each component in a
mixture without time-consuming separations and with minimum
sample preparation. Among such methods, partial least squares
(PLS) is a factorial multivariate calibration method that decom-
poses spectral data into loadings and scores, building the corre-
sponding calibration models from these new variables (Geladi &
Kowalski, 1986; Martens & Næs, 1989). This method, which re-
quires analytes’ compliance of Beer’s Law, has been repeatedly
coupled with FTIR spectroscopy and extensively used to obtain dif-
ferent quality parameters of edible oils (Al-Alawi, Van, de Voort, &
Sedman, 2004; Bendini et al., 2007; Bertran et al., 1999; Iñón, Gar-
rigues, Garrigues, Molina, & de la Guardia, 2003; Li, van de Voort,
Ismail, & Cox, 2000; Li et al., 2000). Particularly, FTIR-PLS has been
recently applied to the evaluation of the fatty acid composition and
other quality parameters of virgin olive oil (Maggio et al., 2009).

The aim of the present work is to develop a new application of
the FTIR-PLS association as a rapid, inexpensive and nondestructive
authenticity measuring tool, useful to determine the adulteration
of EVOO with other edible oils and also to identify and quantify
the percentage of the ruining agent in the blend. This approach
represents a facile and convenient means for monitoring olive oil
quality with the advantage of ease of operation, high sample turn-
over and no sample pretreatment.
2. Materials and methods

2.1. Samples

Pure extra virgin olive oil (EVOO), high oleic sunflower oil
(HOSO), pomace olive oil (POO), high linoleic sunflower oil (HLSO),
canola oil (CO) and hazelnut oil (HO) samples used in this study
were purchased in Italy. Samples were stored in dark bottles with-
out headspace at room temperature before analysis.

A pure sample of each edible oil was analyzed. Different admix-
tures at various ratios (60:40, 70:30, 80:20, 90:10 and 95:5, EVOO:
Adulterant, w/w) of these oils were prepared and used as calibra-
tion or prediction samples, as needed. All experiments and calcula-
tions were done in triplicate.
Fig. 1. FTIR spectra of the extra virgin olive oil (EVOO) purity calibration set. EVOO
samples with 0, 10, 20 and 40% of high linoleic sunflower oil (HLSO), canola oil (CO),
pomace olive oil (POO) and high oleic sunflower oil (HOSO).
2.2. FTIR spectra

The FTIR spectra were acquired on a Tensor 27™ FTIR spectrom-
eter system (Bruker Optics, Milan, Italy), fitted with a Rocksolid™
interferometer and a DigiTect™ detector system coupled to an
attenuated total reflectance (ATR) accessory. The ATR accessory
(Specac Inc., Woodstock, GA, USA) was equipped with a ZnSe 11
reflection crystal. Analyses were carried out at room temperature.
Spectra were acquired (32 scans/sample or background) in the
range of 4000–700 cm�1 at a resolution of 4 cm�1, using OPUS r.
6.0 (Bruker Optics) software. For each sample (2 mL uniformly
spread throughout the crystal surface), the absorbance spectrum
was collected against a background, obtained with a dry and empty
ATR cell. One spectrum per sample was recorded. Before acquiring
each spectrum, the ATR crystal was cleaned with a cellulose tissue
soaked in n-hexane and then rinsed with acetone.
2.3. Statistical analysis

Data were exported in ASCII compatible OPUS 6.0 format with
the assistance of an OPUS macro script and processed employing
MVC1 routines (Olivieri, Goicoechea, & Iñón, 2004) written for
Matlab (Mathworks Inc., Natick, MA, USA).

For each adulterant a different set of samples containing three
or four concentration levels of adulterant, was used for calibration;
the corresponding admixtures were used for validation. Partial
least squares models were computed for each blend with the
respective training set samples. A moving-window strategy was
also executed with the MVC1 program, setting the minimum win-
dow width to 10 sensors.
3. Results and discussion

The oils have different substitution patterns, also differing in
the chain length of their acyl moieties, as well as in their unsatura-
tion degree and position; these differences are reflected in the FTIR
spectra. There are a close relationships between the frequency data
of some specific bands and the composition of the oils: a list of IR
bands and shoulders of some edible oils was published by Guillén
and Cabo (1999), which also includes their tentative assignment to
functional groups. The presence of small amounts of adulterant oil
in virgin olive oil is evidenced by small variations in the values of
the frequencies of specific bands in the spectra. ATR-FTIR spectra of
the virgin olive oil samples are shown in Fig. 1. A two-instances
procedure is proposed to detect the fraud. The first instance con-
sists in the evaluation of the purity (%) of EVOO by a PLS model
with the aim to determine if the sample was adulterated. For the
second instance, a set of successive individuals PLS models for each
adulterant are proposed, in order to determine the identity of the
adulterant and its ratio.



Table 1
Calibration parameters and statistical data for the FTIR-PLS analysis of EVOO purity.

PLS parameter Value

Number of latent variables 13
Spectral region (cm�1) 3805.3–2840.9 plus 1876.6–1105.1
Spectral pretreatment Mean centering and first derivative
Calibration interval (% EVOO) 60–100
PRESS 182.14
RMSD (%) 14.1
REP (%) 18.1
Slope (±SD) 1.000 ± 0.006
Intercept (±SD) 0.0 ± 0.5
R2 (N = 49) 0.9979
Analytical sensitivity 49
Selectivity 0.049
Mean spectral residue 8.20 � 10�07

RMSD ¼ ðPRESS=NÞ0:5; REP ð%Þ ¼ 100 � RMSD=�y.
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3.1. PLS model for the EVOO purity (%)

In order to predict the purity (%) of EVOO, a multivariate cali-
bration model was built by the PLS regression algorithm, using
the first derivate of the mean centered spectral data. PLS is a simple
and convenient calibration method for resolving mixtures, suitable
for the current system resolution. The optimum number of factors
(h) should be selected in order to avoid overfitting when using PLS.
This can be done by applying the leave-one-out cross validation
procedure as developed by Haaland and Thomas (1988). Using this
procedure, the concentration (% purity) of the sample left out dur-
ing the calibration is predicted. This process was repeated n times,
until each one of n calibration samples has been left out once. The
concentration (% purity) predicted for each sample is then com-
pared with its actual concentration and the sum of squared predic-
tion residual errors for all calibration samples (PRESS) is calculated
(Eq. (1)).

PRESS ¼
X

Ci;predicted � Ci;actual
� �2 ð1Þ

Simultaneous optimization of factor number and spectral inter-
val was carried out using the mobile windows algorithm with the
minimum PRESS criteria, as previously reported by Maggio, Castel-
lano, Vignaduzzo, and Kaufman (2007). Additionally, the optimum
number of factors on a determined spectral interval was obtained
by computing the F-ratio PRESS (h < h*)/PRESS (h) where h* corre-
sponds to the minimum PRESS, and selecting the number of factors
leading to a probability of less than 75% (Haaland & Thomas, 1988);
both criteria were in agreement.

The calibration set for the determination of EVOO purity was
constituted by 49 samples, including pure samples of EVOO and
mixtures containing 10%, 20% and 40% of HLSO, CO, HO, POO and
HOSO.

The PLS model exhibited high predictive power for the determi-
nation of the presence of adulterant oils in the calibration and pre-
diction sets. Fig. 2 shows the plots between the actual and
predicted purity values of the calibration and validation mixtures.

The figures of merit of the PLS model (Table 1), were calculated
as suggested by IUPAC (IUPAC, 2006). The intercept and the slope
of the actual vs. predicted results for calibration data contain the
values 0 and 1, respectively, in their confidence intervals. In addi-
tion, acceptable figures of dispersion (PRESS, RMSD and REP) were
Fig. 2. Actual extra virgin olive oil (EVOO) purity percentage vs. FTIR-PLS predicted
values in the calibration (d) and validation (h) sets. The equation of the curve for
the calibration set is [Predicted] = (0.0 ± 0.5) + (1.000 ± 0.006) [Actual]; R2 = 0.9979
(p < 0.05).
obtained for the calibration set, confirming the goodness of fitting
of the model. Good analytical sensitivity and selectivity, and low
spectral residues were also found, showing the good performance
of the model.

As indicated in Fig. 2, the PLS method has good predictive ability
for the determination EVOO purity in the pure validation samples,
yielding values near 100% purity for all of them. In addition, adul-
terated samples exhibited purities lower than 95%, with high dis-
persion. This can be explained taking into account the differences
among the adulterants and their consequences on the correspond-
ing FTIR spectra. These results evidenced that this instance was
useful for distinguishing between adulterated and pure EVOO sam-
ples, regardless the nature of the adulterant.

3.2. PLS models for predicting the ratio of adulterant

In order to predict the ratio of adulterant in the EVOO, various
multivariate calibration models were built by the PLS algorithm,
using FTIR spectral data. A specific PLS model was prepared for
each adulterant.

The different calibration conditions needed for each oil adulter-
ant are shown in Table 2; mean centering and first derivate spec-
tral pretreatment were needed in order to obtain good
calibrations. Simultaneous optimization of factor number and
spectral interval using the mobile window algorithm was required
only for the POO model. In the other models, selection of the opti-
mum spectral region did not evidence predictive performance
improvement over the use of the full FTIR spectra. This may occur
because POO and EVOO exhibited a very similar chemical compo-
sition and in this case, mobile window algorithm could improve
the performance of the method selecting the spectral region where
the difference is more evident. For all calibrated adulterants, low
values were obtained for both RMSD and PRESS, which measure
the average error in the analysis and evaluate the goodness of fit
of the calibration data to the models developed during calibration.
Low LOQs as well as good sensitivities and selectivities, demon-
strated the quality of the models and their suitability for the pro-
posed determinations.

The overall effectiveness of the PLS models for predicting the
adulterant oils in the validation set was determined by calculating
the relative error of prediction (REP) values, shown in Table 3. Al-
most quantitative recoveries were obtained for HLSO, CO and
HOSO. In addition, acceptable recovery rates were obtained for
HO and POO from their validation sets (Table 3). In all cases, the
plots of actual vs. predicted values exhibited slopes close to 1,
intercepts close to 0 and R2 values higher than 0.9, showing the
good performance of the models (Fig. 3). Regarding the spectral
residues, values no higher than 10�4 absorbance units were found
for the adulterants in their corresponding validation sets.



Table 2
Statistical data and figures of merit of the FTIR-PLS calibration models for HLSO, CO, HO, POO and HOSO.

Parameter HLSO CO HO POO HOSO

Spectral range (cm�1) 1876–912
Spectral pretreatment Mean center and D0

0.0
0.05 0.05 0.00 0.05

Concentration levels 0.05
0.3 0.3 0.05 0.3

(Ratio in EVOO) 0.3
1.0 1.0 0.30 1.0

1.0
Number of factors (LVs) 3 3 4 4 4
Number of training samples (N) 10 9 12 9 9
PRESS 2.78 � 10�3 6.18 � 10�2 3.12 � 10�3 2.51 � 10�3 1.14 � 10�2

Root mean square deviation (RMSD) 1.67 � 10�2 8.29 � 10–2 1.61 � 10�2 1.67 � 10�2 3.56 � 10�2

Sensitivity 0.011 0.01 0.85 0.0015 0.0043
Analytical sensitivity 220 280 76 34 110
Selectivity based on total signal 0.4 0.68 0.054 0.6 0.42
Limit of detection (LOD) 0.016 0.007 0.001 0.001 0.04
Limit of quantification (LOQ) 0.048 0.021 0.003 0.003 0.12

Table 3
Results of the determination of accuracy and precision of the FTIR-PLS method for HLSO, CO, HO, POO and HOSO.

HLSO CO HO POO HOSO

Concentration 0.10 0.10 0.10 0.10
0.10

Levels 0.20 0.20 0.20 0.20
0.20

(Ratio in VOO) 0.40 0.40 0.40 0.40
Number of validation samples 10 9 9 7 10
Recovery (%) 86 99 65 142 108
REP (%) 8.2 1.13 20.8 16.4 5.8
Slope (±SD) �0.04 ± 0.02 �0.005 ± 0.003 1.1 ± 1 1.21 ± 0.1 0.03 ± 0.02
Intercept (±SD) 1.13 ± 0.09 1.03 ± 0.01 �0.09 ± 0.03 0.03 ± 0.01 0.88 ± 0.06
R2 0.9448 0.9993 0.9351 0.9733 0.9647
Mean spectral residue 4.0 � 10�5 3.8 � 10�5 9.8 � 10�6 6.0 � 10�5 5.5 � 10�5

A B C

D E F

Fig. 3. Plot of actual vs. predicted ratios of (A) HLSO; (B) CO; (C) HOSO; (D) POO; (E) HO in EVOO for the calibration (d) and validation sets (h). (F) First derivative spectra of
the adulterated EVOO samples.
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3.3. Complete procedure for detecting adulteration of EVOO

A scheme containing the proposed two-instances multi-stage
examination procedure for studying the adulteration of EVOO is
shown in Fig. 4. In the first instance, the purity of EVOO is evalu-
ated by means of a PLS model prepared with pure EVOO and mix-
tures containing different amounts of adulterants. If the level of
EVOO is found to be lower than 99%, a second instance is proposed,
where a set of adulterant-specific PLS models is used for the differ-
ent adulterants, with the aim to identify the adulterant and deter-
mine its amount in the mixture, along successive stages.

When the spectral residues were analyzed, it was observed that
for a given model unknown samples yielded significantly different
values depending on whether the adulterant was modeled or not
(Table 4), in avail of the use of spectral residues as a classification
rule. This is an innovative utilization of the First Order Calibration
Method Advantage (Olivieri, 2008) and the class by class compar-
ison is analogous to the Soft Independent Modeling of Class Anal-
ogy (SIMCA) procedure (Candolfi, De Maesschalck, Massart,
Fig. 4. Overall procedure for the qualitative and qu
Hailey, & Harrington, 1999; Wold, 1976) with different classifica-
tion rules.

Low LOD values of individual FTIR-PLS adulterant models sup-
port the good sensitivity of the global method, whereas low values
of spectral residues convert the overall procedure in a selective tool
for the assessment of EVOO adulteration.

The sequence of adulterant analysis was designed taking into
account possible interferences produced among the adulterants.
An exhaustive study was carried in this direction and the result
is shown in Table 4. Percentage (%) of interference indicated
how much the signal (predicted analyte concentration) increases
respect to the concentration of a determined interferent. In addi-
tion, Spectral Residue (SR %), a typical chemometrics indicator,
was evaluated. It should be compared with SR % of the calibrated
samples. No interference was found for the HSLO-PLS model. On
the other hand, HO, POO and HOSO did not interfere in the CO-
PLS model. Therefore, a non-modeled adulterant can be detected
by an inspection of the SR % of the PLS models. The complete
procedure, useful for a routinary assessment of EVOO purity, is
antitative determination of EVOO adulteration.



Table 4
Interferences and spectral residues (SR) for non-modeled adulterants analyzed by adulterant-specific PLS models.

Adulterant PLS model

HLSO CO HOSO POO HO

Interf. (%) SR (%) Interf. (%) SR (%) Interf. (%) SR (%) Interf. (%) SR (%) Interf. (%) SR (%)

HLSO – 76 163 128 334 219 �8 119 363 176
CO 34 134 – 85 221 123 252 132 306 361
HOSO �4.9 109 35 155 – 86 148 126 �8 176
POO 2.24 150 31.1 92 72 157 – 79 57 99
HO 19.6 216 31 258 108 264 150 110 – 156
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amenable for automatization employing a series of Matlab rou-
tines (Fig. 4).

4. Conclusions

A multi-stage strategy combining infrared spectrometry with
PLS as a multivariate method was developed as a powerful tool
for monitoring the purity of EVOO and performing qualitative
and quantitative determinations of adulterants in its commercial
samples. PLS calibration models constructed for the evaluation of
EVOO purity and for the adulterants HLSO, CO, HO, POO and HOSO
were internally validated by the leave-one-out procedure and their
predictive ability was assessed by independent external validation
sets. The described calibration models were linear, accurate and
precise when the contents of all adulterants were assayed in syn-
thetic samples. The general operating procedure represents an
improvement toward adulterant assessment in EVOO, using the
prediction of adulterant ratio and the spectral residues to deter-
mine sample composition. The obtained results also confirm that
the method is highly suitable for the intended purpose.
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